Leecode 刷题笔记之可视化六大排序算法:冒泡、快速、归并、插入、选择、桶排序

简介: 这篇文章是关于LeetCode刷题笔记,主要介绍了六大排序算法(冒泡、快速、归并、插入、选择、桶排序)的Python实现及其可视化过程。

冒泡排序

思想
相邻的元素两两比较,较大的数下沉,较小的数冒起来,这样一趟比较下来,最大(小)值就会排列在一端。整个过程如同气泡冒起,因此被称作冒泡排序。

import random
from visual import visualizer

def maopaoSort(arr):
    return maopao(arr,len(arr)-1)

def maopao(num,n):
    for i in range(n):
        #对前一个的数据与后一个的数据进行比较
        for j in range(n):
            if num[j+1]<num[j]:
                visualizer.draw_bars(num, j, j + 1, len(num))
                num[j],num[j+1]=num[j+1],num[j]
    return num

if __name__ == '__main__':
    date = list(range(1, 101))
    random.shuffle(date)
    visualizer.t.bgcolor('black')
    maopaoSort(date)
    visualizer.t.done()

快速排序

思想
通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可以对这两部分记录继续进行排序,以达到整个系列有序。
具体代码

import random
from visual import visualizer

def quicksort(nums):
    quicksorthelper(nums,0,len(nums)-1)
    return nums

def quicksorthelper(nums,startidex,rightidex):
    # 如果列表中只有一个元素或者不存在的话
    if startidex>=rightidex:return
    # 找出第一个元素为初始值
    pivotidex=startidex
    privovalue=nums[pivotidex]
    # 以第二个元素为左指针
    left=startidex+1
    # 以第最后元素为右指针
    right=rightidex
    while left<=right:
        # 如果左指针指向的元素大于初始值大于右指针的元素,则说明左指针的值应该和右指针进行替换
        if nums[left]>privovalue>nums[right]:
            visualizer.draw_bars(nums, left, right, len(nums))
            nums[left],nums[right]=nums[right],nums[left]
        # 如果左指针的元素小于等于初始值,则不需要替换,只需要将左指针往右移动一位
        if nums[left]<=privovalue:
            left+=1
        # 如果右指针的元素大于等于初始值,则不需要替换,只需要将右指针往左移动一位
        if nums[right]>=privovalue:
            right-=1
    # 调换初始指针和右指针的元素位置,完成一次快速排序
    nums[right],nums[pivotidex]=nums[pivotidex],nums[right]
    visualizer.draw_bars(nums, pivotidex, right, len(nums))
    # 每一次递归操作都需要去额外的开辟存储空间,为了尽可能降低空间复杂度
    # 需要先判断左右列表的长短,先对短的进行快速排序,在对长的进行快速排序即可。
    leftlength=right-startidex
    rightlength=rightidex-right
    if leftlength<rightlength:
        quicksorthelper(nums,startidex,right-1)
        quicksorthelper(nums,right+1,rightidex)
    else:
        quicksorthelper(nums,right+1,rightidex)
        quicksorthelper(nums,startidex,right-1)

if __name__ == '__main__':
    date = list(range(1, 101))
    random.shuffle(date)
    visualizer.t.bgcolor('black')
    quicksort(date)
    visualizer.t.done()

归并排序

思想
并指将两个或两个以上的有序数表合并成一个新的有序表
步骤

  1. 将序列中带排序数字分为若干组,每个数字分为一组
  2. 将若干个组两两合并,保证合并后的组是有序的
  3. 重复第二步操作直到只剩下一组,排序完成
import random
from visual import visualizer
def merge(nums,left,mid,right):
    new_nums=[]
    l,r=left,mid+1
    while l<=mid and r<=right:
        if nums[l]<nums[r]:
            new_nums.append(nums[l])
            visualizer.draw_bars(nums,l,r,len(nums))
            l+=1
        else:
            new_nums.append(nums[r])
            visualizer.draw_bars(nums,l,r,len(nums))
            r+=1
    while l<=mid:
        new_nums.append(nums[l])
        visualizer.draw_bars(nums, l, r, len(nums))
        l+=1
    while r<=right:
        new_nums.append(nums[r])
        visualizer.draw_bars(nums, l, r, len(nums))
        r+=1
    nums[left:right+1]=new_nums

def merge_sort(nums,left,right):
    if left<right:
        mid=(left+right)//2
        merge_sort(nums,left,mid)
        merge_sort(nums,mid+1,right)
        merge(nums,left,mid,right)
        visualizer.draw_bars(nums, -1, -1, len(nums))

def run(nums):
    l,r=0,len(nums)-1
    return merge_sort(nums,l,r)

if __name__ == '__main__':
    date=list(range(1,101))
    random.shuffle(date)
    visualizer.t.bgcolor('black')
    run(date)
    visualizer.t.done()

插入排序

思想
将给定元素分为两组,开始第一个元素分为一组,后面的元素分为一组,然后通过不断遍历后面的元素不断插入到前面合适的位置。

# 原理:将给定元素分为两组,开始第一个元素分为一组,后面的元素分为一组,然后通过不断遍历后面的元素不断插入到前面合适的位置
import random
from visual import visualizer
# 0(n^2)Time | O(1) Space
# stable
def insert_arr(a):
    for i in range(len(a)):
        j=i
        while j>0 and a[j]<a[j-1]:
            visualizer.draw_bars(a,j,j-1,len(a))
            a[j],a[j-1]=a[j-1],a[j]
            j-=1
    return a

if __name__ == '__main__':
    date=list(range(1,101))
    random.shuffle(date)
    visualizer.t.bgcolor('black')
    insert_arr(date)
    visualizer.t.done()

选择排序

思想
第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,继续放在起始位置知道未排序元素个数为0。

#基本原理:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,继续放在起始位置知道未排序元素个数为0
import random
from visual import visualizer
# 时间复杂度
# 空间复杂度
# 是否稳定

def Selectsort(a):
    # 将每一轮的最小值的索引找出来,并放入序列的起始位置
    for i in range(len(a)-1):
        # key
        start_idex=i
        for j in range(i+1,len(a)):
            # 为了找更小的值
            visualizer.draw_bars(a, i, j, len(a))
            if a[start_idex]>a[j]:
                start_idex=j
        # start_idex为我们选出来的最小值索引,i为每一轮的初始值,就进行相应替换即可
        a[start_idex],a[i]=a[i],a[start_idex]
        visualizer.draw_bars(a, i, start_idex, len(a))
    return a

if __name__ == '__main__':
    date=list(range(1,20))
    random.shuffle(date)
    visualizer.t.bgcolor('black')
    Selectsort(date)
    visualizer.t.done()

桶排序

思想
将阵列分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序。

import random

def Tongsort(x):
    # 找到数组的最大值和最小值
    # 方法1
    maxvalue,minvalue=x[0],x[0]
    for i in range(1,len(x)):
        if x[i]>maxvalue:
            maxvalue=x[i]
        if x[i]<minvalue:
            minvalue=x[i]
    # 方法2
    # maxvalue,minvalue=max(x),min(x)

    # 计算桶的数量
    bucketnum=(maxvalue-minvalue)//3+1
    bucket=[[]for i in range(bucketnum)]
    # 根据数值对桶进行划分
    for i in x:
        bucket[i//3].append(i)

    # 针对每一个桶使用快速排序
    for b in bucket:
        quicksorthelper(b,0,len(b)-1)
    x.clear()
    for i in bucket:
        x.extend(i)
    return x

def quicksorthelper(nums,startidex,rightidex):
    # 如果列表中只有一个元素或者不存在的话
    if startidex>=rightidex:return
    # 找出第一个元素为初始值
    pivotidex=startidex
    privovalue=nums[pivotidex]
    # 以第二个元素为左指针
    left=startidex+1
    # 以第最后元素为右指针
    right=rightidex
    while left<=right:
        # 如果左指针指向的元素大于初始值大于右指针的元素,则说明左指针的值应该和右指针进行替换
        if nums[left]>privovalue>nums[right]:
            nums[left],nums[right]=nums[right],nums[left]
        # 如果左指针的元素小于等于初始值,则不需要替换,只需要将左指针往右移动一位
        if nums[left]<=privovalue:
            left+=1
        # 如果右指针的元素大于等于初始值,则不需要替换,只需要将右指针往左移动一位
        if nums[right]>=privovalue:
            right-=1
    # 调换初始指针和右指针的元素位置,完成一次快速排序
    nums[right],nums[pivotidex]=nums[pivotidex],nums[right]
    # 每一次递归操作都需要去额外的开辟存储空间,为了尽可能降低空间复杂度
    # 需要先判断左右列表的长短,先对短的进行快速排序,在对长的进行快速排序即可。
    leftlength=right-startidex
    rightlength=rightidex-right
    if leftlength<rightlength:
        quicksorthelper(nums,startidex,right-1)
        quicksorthelper(nums,right+1,rightidex)
    else:
        quicksorthelper(nums,right+1,rightidex)
        quicksorthelper(nums,startidex,right-1)

if __name__ == '__main__':
    date=list(range(1,11))
    random.shuffle(date)
    b=Tongsort(date)
    print(b)

可视化工具

import turtle as t
import random


def draw_bar(x,y,w,h):
    t.pu()
    t.goto(x,y)
    t.pd()
    t.seth(0)
    t.begin_fill()
    t.fd(w)
    t.left(90)
    t.fd(h)
    t.left(90)
    t.fd(w)
    t.left(90)
    t.fd(h)
    t.end_fill()

def draw_bars(lst,index1,index2,M):
    t.clear()
    x=-420
    n=len(lst)
    # w柱状矩形的宽度
    w=830/n
    # 矩形的高度
    r=650/M
    # 不刷新屏幕
    t.tracer(0)
    # 绘制的时候看不到小箭头
    t.ht()
    for i in range(n):
        if index1==i:
            # 显示出特定的idex
            t.fillcolor('red')
        elif index2==i:
            t.fillcolor('blue')
        else:
            t.fillcolor('white')
        draw_bar(x,-385,w,lst[i]*r)
        x+=w
    t.update()

    # t.clear()
    # x=-420
    # n=len(lst)
    # # w柱状矩形的宽度
    # w=830/n
    # # 矩形的高度
    # r=650/M
    # # 不刷新屏幕
    # t.tracer(0)
    # # 绘制的时候看不到小箭头
    # t.ht()
    # for i in range(n):
    #     t.fillcolor('green')
    #     draw_bar(x,-385,w,lst[i]*r)
    #     x+=w
    # t.update()


# lst=list(range(1,101))
# random.shuffle(lst)
# draw_bars(lst,-1,-1,len(lst))
# t.done()
目录
相关文章
|
2月前
|
算法 索引
❤️算法笔记❤️-(每日一刷-141、环形链表)
❤️算法笔记❤️-(每日一刷-141、环形链表)
50 0
|
2月前
|
算法 API 计算机视觉
人脸识别笔记(一):通过yuface调包(参数量54K更快更小更准的算法) 来实现人脸识别
本文介绍了YuNet系列人脸检测算法的优化和使用,包括YuNet-s和YuNet-n,以及通过yuface库和onnx在不同场景下实现人脸检测的方法。
72 1
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
73 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-160、相交链表)
❤️算法笔记❤️-(每日一刷-160、相交链表)
18 1
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
33 0
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-26、删除有序数组的重复项)
❤️算法笔记❤️-(每日一刷-26、删除有序数组的重复项)
25 0
|
12天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
18天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
6天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
6天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。