基于无线传感器网络的MCKP-MMF算法matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。

1.程序功能描述
基于流量估计,MCKP-MMF算法便可以找到本地MCKP-MMF的近似解。其基本思想与MMKP-MMF相似,但是相比之下,MCKP-MMF采取了更为简单的策略从而使之成为一种启发式算法并且运行更快。算法从最小配置开始,并将所有访问点初始化为活动状态。此后,算法在执行的每一轮中发现一个较好的部分解,并将相关的访问点置为停止状态,直至所有访问点都成为停止状态,算法终止。

1.png

某个访问点可能先后收到来自多个拥塞节点的重新设置影响半径的要求,此时为了满足带宽消耗最大的节点的带宽限制,访问点需要将其新影响半径设置为其中最小的一个。一种简单的方法是每次收到这样的请求之后,将其中包含的新影响半径与访问点当前影响半径比较,如果新影响半径较小则修改当前影响半径为新影响半径,否则访问点保持当前影响半径。这样作的一个副作用是访问点的影响半径将随时间增长而变小。从另一方面,节点由于仅通过本地信息为与之相关的访问点确定影响半径,可能无法得到访问点真正的最优影响半径。为了消除这个副作用并帮助访问点跳出本地最优状态从而更接近全局最优配置,每个访问点需要周期性的增加其影响半径。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序
```while(times <Stimes)
figure(2);
plot(Xn,Yn,'b.');
hold on;
plot(Xm,Ym,'r.');
hold on;

 times
 times    = times + 1;
 SATVs    = SATV*ones(1,N);

Tpk = zeros(M,1); %代价函数
NEXT_ptr = 0;
NEXT_Set = ones(1,M);

while(NEXT_ptr<= M)
%所有活动访问点半径均被增加且所得为合适解
%计算代价函数
for j = 1:M
for i1 = 1:N
d = sqrt( (Xn(i1) - Xm(j))^2 + (Yn(i1) - Ym(j))^2 );
%判断是否在一定范围之内
if d <= Rs(j)
%进行资源分配
Tpk(j) = Tpk(j) + Requst(j,i1);
else
Tpk(j) = Tpk(j);
end
end
end

     [A,I]             = sort(Tpk);

     if A > 0
        %选择最小的一个

Tpk_min = A(1);
Tpk_ind = I(1);
NEXT_Set(Tpk_ind) = 0;
if feasible(A,rij) == 1
%没有被违反
Rs(Tpk_ind) = Rs(Tpk_ind) + Step;
if (NEXT_Set(Tpk_ind)) == 0
NEXT_ptr = NEXT_ptr;
else
NEXT_ptr = NEXT_ptr + 1;
end
else
%违反了,则直接退出进入下一个循环
NEXT_ptr = M+1;
end
else
%如果流量为0,则说明没有发生任何请求,其实半径自动递增
Tpk_min = A(1);
Tpk_ind = I(1);
Rs(Tpk_ind) = Rs(Tpk_ind) + Step;
end
end

 %多个拥塞节点的重新设置影响半径
 for j = 1:M
     %表示该访问点处于第1阶段
     if FLag(j) == 0
        %计算每个节点到访问点的距离
        for i1 = 1:N
            d = sqrt( (Xn(i1) - Xm(j))^2 + (Yn(i1) - Ym(j))^2 );
            %判断是否在一定范围之内
            if d <= Rs(j)
               %进行资源分配
               SATVs(1,i1) = SATVs(1,i1) - Requst(j,i1);
            else
               SATVs(1,i1) = SATVs(1,i1); 
            end    
            %每次请求完之后,判断是否拥堵
            if SATVs(1,i1) <= 0%表示拥堵

saturated_state{j,i1} = [1,Rs',Xm(j),Ym(j),Xn(i1),Yn(i1)];
FLag(j) = 1;
else
saturated_state{j,i1} = [0,zeros(1,M),0,0,0,0];
FLag(j) = FLag(j);
end
end
end
%**
end
%绘制仿真结果
figure(3);
subplot(421);
plot(R(1,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点1半径请求变化');
subplot(422);
plot(R(2,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点2半径请求变化');
subplot(423);
plot(R(3,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点3半径请求变化');
subplot(424);
plot(R(4,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点4半径请求变化');
subplot(425);
plot(R(5,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点5半径请求变化');
subplot(426);
plot(R(6,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点6半径请求变化');
subplot(427);
plot(R(7,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点7半径请求变化');
subplot(428);
plot(R(8,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点8半径请求变化');
%绘制仿真结果
figure(4);
subplot(421);
plot(TPK(1,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点1代价函数');
subplot(422);
plot(TPK(2,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点2代价函数');
subplot(423);
plot(TPK(3,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点3代价函数');
subplot(424);
plot(TPK(4,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点4代价函数');
subplot(425);
plot(TPK(5,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点5代价函数');
subplot(426);
plot(TPK(6,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点6代价函数');
subplot(427);
plot(TPK(7,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点7代价函数');
subplot(428);
plot(TPK(8,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点8代价函数');
12_008m

```

4.本算法原理
算法的执行可以分为两个阶段。第一阶段是通常所谓的慢启动阶段,在该阶段,各个sink开始于最小半径的请求,然后以某种速度增加其请求半径,直到算法发现一个潜在的瓶颈节点,此时相关sink将收到消息。算法中initRadius过程负责确定每次增加请求半径。某个sink收到一个消息之后重新设置其请求半径为某一较小值以试图缓解拥塞。 resetRadius过程负责在收到消息之后计算新的请求半径。该sink随后进入算法的第二阶段。进入第二阶段的sink将周期性的试图增加其请求半径,以取得最优 max-min公平请求半径。此步骤由increaseRadius过程处理。这样增加的结果是,不久之后该sink再次收到消息并缩小请求半径,而后再次周期性增加。

    所有sink同时发出请求,并将初始半径设置为最小值。然后所有sink以同步方式增加请求半径直到网络中某一传感器节点上的数据流量饱和(该节点被称为瓶颈节点)。当某个传感器节点流量饱和时,覆盖该节点的所有sink停止增加其请求半径,但是其它sink继续增加其请求半径。当没有sink可以继续增加其请求半径时,算法结束。我们说此算法的解为最优解是因为该算法的解满足max-min公平性的同时被全局或局部最大化。
相关文章
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
12天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。
|
1月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
1月前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
12天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
12天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
28天前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
下一篇
oss创建bucket