基于无线传感器网络的MCKP-MMF算法matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。

1.程序功能描述
基于流量估计,MCKP-MMF算法便可以找到本地MCKP-MMF的近似解。其基本思想与MMKP-MMF相似,但是相比之下,MCKP-MMF采取了更为简单的策略从而使之成为一种启发式算法并且运行更快。算法从最小配置开始,并将所有访问点初始化为活动状态。此后,算法在执行的每一轮中发现一个较好的部分解,并将相关的访问点置为停止状态,直至所有访问点都成为停止状态,算法终止。

1.png

某个访问点可能先后收到来自多个拥塞节点的重新设置影响半径的要求,此时为了满足带宽消耗最大的节点的带宽限制,访问点需要将其新影响半径设置为其中最小的一个。一种简单的方法是每次收到这样的请求之后,将其中包含的新影响半径与访问点当前影响半径比较,如果新影响半径较小则修改当前影响半径为新影响半径,否则访问点保持当前影响半径。这样作的一个副作用是访问点的影响半径将随时间增长而变小。从另一方面,节点由于仅通过本地信息为与之相关的访问点确定影响半径,可能无法得到访问点真正的最优影响半径。为了消除这个副作用并帮助访问点跳出本地最优状态从而更接近全局最优配置,每个访问点需要周期性的增加其影响半径。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序
```while(times <Stimes)
figure(2);
plot(Xn,Yn,'b.');
hold on;
plot(Xm,Ym,'r.');
hold on;

 times
 times    = times + 1;
 SATVs    = SATV*ones(1,N);

Tpk = zeros(M,1); %代价函数
NEXT_ptr = 0;
NEXT_Set = ones(1,M);

while(NEXT_ptr<= M)
%所有活动访问点半径均被增加且所得为合适解
%计算代价函数
for j = 1:M
for i1 = 1:N
d = sqrt( (Xn(i1) - Xm(j))^2 + (Yn(i1) - Ym(j))^2 );
%判断是否在一定范围之内
if d <= Rs(j)
%进行资源分配
Tpk(j) = Tpk(j) + Requst(j,i1);
else
Tpk(j) = Tpk(j);
end
end
end

     [A,I]             = sort(Tpk);

     if A > 0
        %选择最小的一个

Tpk_min = A(1);
Tpk_ind = I(1);
NEXT_Set(Tpk_ind) = 0;
if feasible(A,rij) == 1
%没有被违反
Rs(Tpk_ind) = Rs(Tpk_ind) + Step;
if (NEXT_Set(Tpk_ind)) == 0
NEXT_ptr = NEXT_ptr;
else
NEXT_ptr = NEXT_ptr + 1;
end
else
%违反了,则直接退出进入下一个循环
NEXT_ptr = M+1;
end
else
%如果流量为0,则说明没有发生任何请求,其实半径自动递增
Tpk_min = A(1);
Tpk_ind = I(1);
Rs(Tpk_ind) = Rs(Tpk_ind) + Step;
end
end

 %多个拥塞节点的重新设置影响半径
 for j = 1:M
     %表示该访问点处于第1阶段
     if FLag(j) == 0
        %计算每个节点到访问点的距离
        for i1 = 1:N
            d = sqrt( (Xn(i1) - Xm(j))^2 + (Yn(i1) - Ym(j))^2 );
            %判断是否在一定范围之内
            if d <= Rs(j)
               %进行资源分配
               SATVs(1,i1) = SATVs(1,i1) - Requst(j,i1);
            else
               SATVs(1,i1) = SATVs(1,i1); 
            end    
            %每次请求完之后,判断是否拥堵
            if SATVs(1,i1) <= 0%表示拥堵

saturated_state{j,i1} = [1,Rs',Xm(j),Ym(j),Xn(i1),Yn(i1)];
FLag(j) = 1;
else
saturated_state{j,i1} = [0,zeros(1,M),0,0,0,0];
FLag(j) = FLag(j);
end
end
end
%**
end
%绘制仿真结果
figure(3);
subplot(421);
plot(R(1,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点1半径请求变化');
subplot(422);
plot(R(2,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点2半径请求变化');
subplot(423);
plot(R(3,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点3半径请求变化');
subplot(424);
plot(R(4,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点4半径请求变化');
subplot(425);
plot(R(5,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点5半径请求变化');
subplot(426);
plot(R(6,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点6半径请求变化');
subplot(427);
plot(R(7,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点7半径请求变化');
subplot(428);
plot(R(8,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点8半径请求变化');
%绘制仿真结果
figure(4);
subplot(421);
plot(TPK(1,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点1代价函数');
subplot(422);
plot(TPK(2,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点2代价函数');
subplot(423);
plot(TPK(3,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点3代价函数');
subplot(424);
plot(TPK(4,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点4代价函数');
subplot(425);
plot(TPK(5,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点5代价函数');
subplot(426);
plot(TPK(6,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点6代价函数');
subplot(427);
plot(TPK(7,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点7代价函数');
subplot(428);
plot(TPK(8,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点8代价函数');
12_008m

```

4.本算法原理
算法的执行可以分为两个阶段。第一阶段是通常所谓的慢启动阶段,在该阶段,各个sink开始于最小半径的请求,然后以某种速度增加其请求半径,直到算法发现一个潜在的瓶颈节点,此时相关sink将收到消息。算法中initRadius过程负责确定每次增加请求半径。某个sink收到一个消息之后重新设置其请求半径为某一较小值以试图缓解拥塞。 resetRadius过程负责在收到消息之后计算新的请求半径。该sink随后进入算法的第二阶段。进入第二阶段的sink将周期性的试图增加其请求半径,以取得最优 max-min公平请求半径。此步骤由increaseRadius过程处理。这样增加的结果是,不久之后该sink再次收到消息并缩小请求半径,而后再次周期性增加。

    所有sink同时发出请求,并将初始半径设置为最小值。然后所有sink以同步方式增加请求半径直到网络中某一传感器节点上的数据流量饱和(该节点被称为瓶颈节点)。当某个传感器节点流量饱和时,覆盖该节点的所有sink停止增加其请求半径,但是其它sink继续增加其请求半径。当没有sink可以继续增加其请求半径时,算法结束。我们说此算法的解为最优解是因为该算法的解满足max-min公平性的同时被全局或局部最大化。
相关文章
|
2月前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
102 0
|
1月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
179 4
|
1月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
260 5
|
2月前
|
存储 算法 安全
即时通讯安全篇(三):一文读懂常用加解密算法与网络通讯安全
作为开发者,也会经常遇到用户对数据安全的需求,当我们碰到了这些需求后如何解决,如何何种方式保证数据安全,哪种方式最有效,这些问题经常困惑着我们。52im社区本次着重整理了常见的通讯安全问题和加解密算法知识与即时通讯/IM开发同行们一起分享和学习。
284 9
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
203 2
|
1月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
266 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
116 0
|
1月前
|
传感器 机器学习/深度学习 数据采集
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
155 0
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
200 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
148 2