Dantzig-Wolfe分解算法解释与Python代码示例

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Dantzig-Wolfe分解算法解释与Python代码示例

Dantzig-Wolfe分解算法解释与Python代码示例

一、算法解释

Dantzig-Wolfe分解算法(简称DW分解)是一种用于求解大规模线性规划问题的有效方法。其核心思想是将一个复杂的线性规划问题(称为母规划)分解为若干个规模较小的子规划,通过解决这些子规划来逼近母规划的最优解。

具体来说,DW分解算法从母规划的一个基可行解开始,通过引入新的变量(称为乘数)将母规划分解为多个子规划。每个子规划只涉及母规划中的一部分变量和约束,因此规模较小,易于求解。然后,通过求解这些子规划来评估当前基可行解的质量,并据此进行迭代更新,直至找到母规划的最优解。

DW分解算法的优点在于,它能够将一个复杂的大规模问题分解为多个简单的子问题,从而降低了求解的复杂度和计算量。此外,由于子问题之间相对独立,因此可以并行计算,进一步提高求解效率。

二、Python代码示例

下面是一个使用Python实现的Dantzig-Wolfe分解算法的简单示例。请注意,由于线性规划问题的复杂性和多样性,这里仅提供一个框架性的示例,用于说明算法的基本流程和思想。

# 导入必要的库
from scipy.optimize import linprog
import numpy as np

# 假设我们有一个简单的线性规划问题,需要分解为两个子问题
# 母规划的目标函数系数和约束条件
c = np.array([1, 2])  # 目标函数系数
A = np.array([[1, 2], [3, 4]])  # 约束条件系数矩阵
b = np.array([5, 6])  # 约束条件右侧常数向量

# 分解母规划为两个子规划
# 子规划1的变量和约束条件
c1 = c[:1]  # 子规划1的目标函数系数
A1 = A[:, :1]  # 子规划1的约束条件系数矩阵
b1 = b[:1]  # 子规划1的约束条件右侧常数向量

# 子规划2的变量和约束条件
c2 = c[1:]  # 子规划2的目标函数系数
A2 = A[:, 1:]  # 子规划2的约束条件系数矩阵
b2 = b[1:]  # 子规划2的约束条件右侧常数向量

# 求解子规划1和子规划2
res1 = linprog(c1, A_ub=A1, b_ub=b1, bounds=(0, None))
res2 = linprog(c2, A_ub=A2, b_ub=b2, bounds=(0, None))

# 根据子规划的解构造母规划的解(这里简单地将两个子规划的解相加,实际情况可能更复杂)
x_master = np.concatenate((res1.x, res2.x))

# 输出结果
print("子规划1的最优解:", res1.x)
print("子规划2的最优解:", res2.x)
print("母规划的最优解(近似):", x_master)

# 注意:上述代码仅用于演示目的,实际使用时需要根据具体问题调整约束条件和目标函数

注释

  • linprog函数是SciPy库中的一个函数,用于求解线性规划问题。这里我们用它来求解子规划问题。
  • 在实际应用中,母规划的分解和子规划的求解过程可能会更加复杂,需要根据具体问题的特性和约束条件进行调整。此外,还需要考虑如何将子规划的解组合成母规划的解,并评估其质量。
  • 上述代码中的x_master变量仅用于演示目的,它简单地将两个子规划的解相加作为母规划的解。在实际应用中,可能需要采用更复杂的策略来构造母规划的解。
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
17天前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
200行python代码实现从Bigram模型到LLM
|
17天前
|
机器学习/深度学习 算法 PyTorch
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
从零开始200行python代码实现LLM
|
1月前
|
数据采集 运维 API
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
把Postman调试脚本秒变Python采集代码的三大技巧
|
2月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
288 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
26天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
66 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
28天前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
254 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
2月前
|
开发框架 Java .NET
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
215 0
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
17天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密

热门文章

最新文章

推荐镜像

更多