模型训练实战:选择合适的优化算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 【7月更文第17天】在模型训练这场智慧与计算力的较量中,优化算法就像是一位精明的向导,引领着我们穿越复杂的损失函数地形,寻找那最低点的“宝藏”——最优解。今天,我们就来一场模型训练的实战之旅,探讨两位明星级的优化算法:梯度下降和Adam,看看它们在不同战场上的英姿。

在模型训练这场智慧与计算力的较量中,优化算法就像是一位精明的向导,引领着我们穿越复杂的损失函数地形,寻找那最低点的“宝藏”——最优解。今天,我们就来一场模型训练的实战之旅,探讨两位明星级的优化算法:梯度下降和Adam,看看它们在不同战场上的英姿。

梯度下降:简单而直接的探索者

梯度下降,作为优化算法界的元老,其原理简单直观:想象你在山中迷路,想要下到山谷底部,你会观察脚下最陡峭的方向,然后朝那个方向走一步,这就是梯度下降的基本思想。在数学语言中,梯度就是函数在某一点处的方向导数沿着该方向取得的最大值,指向函数增大的最快方向,我们反其道而行之,就能找到函数减小的方向。

代码示例 (Python + NumPy):

import numpy as np

def gradient_descent(x_start, learning_rate, iterations):
    x = x_start
    for _ in range(iterations):
        gradient = 2 * x  # 假设我们的函数是f(x)=x^2,其梯度为2x
        x -= learning_rate * gradient
    return x

# 使用梯度下降找f(x)=x^2的最小值点,起点设为5,学习率为0.1,迭代100次
minimum_point = gradient_descent(5, 0.1, 100)
print("Minimum point found at:", minimum_point)

Adam:智能与适应的探险家

Adam,全称Adaptive Moment Estimation,是近年来在深度学习领域大放异彩的优化算法。如果说梯度下降是位勇往直前的勇士,那么Adam就是一位携带了高科技装备的探险家。它不仅考虑了梯度的方向,还通过计算梯度的一阶矩估计(即动量项)和二阶矩估计(即自适应学习率),使得在搜索过程中能够更快地响应地形变化,特别是在非凸函数或者噪声较大的情况下表现更为出色。

代码示例 (使用Keras,因为它内置了Adam优化器):

from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam

# 构建简单的神经网络模型
model = Sequential()
model.add(Dense(32, input_dim=8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# 编译模型,指定Adam优化器
optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])

# 假设我们有训练数据X_train和Y_train
# 训练模型
model.fit(X_train, Y_train, epochs=50, batch_size=32)

适用场景讨论

梯度下降适合于问题规模较小、结构较为简单的情况,尤其是当你对模型训练过程有较高控制需求时。它直接且易于理解,对于初学者来说是一个很好的起点。

Adam则在处理大规模、高维度以及非凸优化问题时展现出显著优势。它的自适应学习率机制让它在复杂的深度学习任务中尤为高效,特别是在模型初期训练时能快速收敛,且对初始学习率的选择不那么敏感。

总之,选择哪种优化算法,还需根据具体问题的特性和需求来定。梯度下降像是一位稳重的老兵,适合基础训练;而Adam则是装备精良的特种兵,适合复杂环境下的快速突进。在模型训练的征途中,了解并灵活运用这些优化工具,将使你的探索之旅更加顺利。

目录
相关文章
|
1月前
|
算法 数据可视化 测试技术
HNSW算法实战:用分层图索引替换k-NN暴力搜索
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
135 10
HNSW算法实战:用分层图索引替换k-NN暴力搜索
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
1月前
|
机器学习/深度学习 缓存 算法
微店关键词搜索接口核心突破:动态权重算法与语义引擎的实战落地
本文详解微店搜索接口从基础匹配到智能推荐的技术进阶路径,涵盖动态权重、语义理解与行为闭环三大创新,助力商家提升搜索转化率、商品曝光与用户留存,实现技术驱动的业绩增长。
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
252 5
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
113 0
|
2月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
121 1
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
1月前
|
机器学习/深度学习 算法 物联网
基于遗传方法的动态多目标优化算法
基于遗传方法的动态多目标优化算法