数据仓库的性能问题及解决之道
随着数据量的增长和业务复杂度的提升,数据仓库性能问题日益凸显,如查询慢、跑批不完等。传统解决方案如集群、预计算和优化引擎虽有一定效果,但成本高、灵活性差或性能提升有限。esProc SPL 提供了一种新的解决思路,通过非 SQL 的计算体系,结合高性能算法和优化的数据存储,实现更高效的数据处理,尤其适用于复杂计算场景。
【AI系统】混合并行
混合并行融合了数据并行、模型并行和流水线并行,旨在高效利用计算资源,尤其适合大规模深度学习模型训练。通过将模型和数据合理分配至多个设备,混合并行不仅提升了计算效率,还优化了内存使用,使得在有限的硬件条件下也能处理超大型模型。3D混合并行(DP+PP+TP)是最先进的形式,需至少8个GPU实现。此策略通过拓扑感知3D映射最大化计算效率,减少通信开销,是当前深度学习训练框架如Deepspeed和Colossal AI的核心技术之一。
《TensorFlow 的基本概念和使用场景》
TensorFlow是由Google开发的开源机器学习框架,支持灵活构建与训练各类模型。其核心概念包括张量、计算图、变量和会话,广泛应用于机器学习、数据处理、分布式计算及模型部署等领域,具备高效计算与部署能力。
DataWorks
DataWorks是阿里巴巴推出的智能化大数据开发与治理平台,支持数据仓库、数据湖等架构,集成多种阿里云大数据计算服务,如MaxCompute、Hologres等,助力政府、金融、零售等行业实现数据全生命周期管理,推动数字化转型和数据资产增值。
DataWorks
DataWorks 是阿里云推出的一站式智能大数据开发与治理平台,拥有 15 年大数据建设经验,提供 ETL 开发、数据分析及数据资产治理功能,支持 MaxCompute、EMR、Hologres、Flink 和 PAI 等多种计算服务,助力企业实现数据全生命周期管理和价值挖掘。