异构计算

首页 标签 异构计算
# 异构计算 #
关注
18678内容
|
21小时前
|
《解析 MXNet 的 C++版本在分布式训练中的机遇与挑战》
MXNet C++版本在分布式训练中展现出高效计算性能、灵活跨平台支持和良好可扩展性的优势,但也面临环境配置复杂、通信开销与同步延迟及调试难度大的挑战。深入研究这些优劣,有助于推动深度学习技术在分布式场景下的高效应用。
|
1天前
|
XDMA与FPGA:高效数据传输的艺术
XDMA(Xilinx's DMA/Bridge Subsystem for PCI Express)是Xilinx推出的一种高效数据传输引擎,专为PCIe总线设计。通过封装PCIe协议,XDMA提供简化的API接口,支持Scatter-Gather DMA和Block DMA模式,特别适用于高性能计算、实时视频处理和大数据分析等领域的数据传输。XDMA通过链表传输和高效的PCIe接口,减少了主机CPU的负担,提高了数据传输效率。AXI4和AXI4-Stream接口进一步增强了XDMA与FPGA的协同工作能力,使其在现代计算系统中发挥重要作用。
|
1天前
|
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
|
2天前
| |
来自: 无影
《CST Studio Suite 2024 GPU加速计算指南》
《GPU Computing Guide》是Dassault Systèmes发布的CST Studio Suite 2024的GPU计算指南,涵盖了硬件支持、操作系统支持、许可证、启用方法、NVIDIA和AMD GPU的详细信息及使用指南和故障排除等内容。硬件支持包括NVIDIA和AMD的多种GPU型号,操作系统支持多种版本,许可证通过加速令牌或SimUnit令牌授权。启用方法包括交互式模拟和批处理模式。使用指南和故障排除部分提供了详细的配置和问题解决方法。
重磅发布 | OpenSearch推出向量检索GPU图算法方案并支持GPU规格售卖
OpenSearch向量检索版推出了面向企业开发者的GPU图算法方案(CAGRA算法),支持客户直接购买GPU规格节点,是国内首家支持GPU规格的向量检索产品。
|
3天前
| |
Differential Transformer: 通过差分注意力机制提升大语言模型性能
《Differential Transformer》论文提出了一种新的差分注意力机制,旨在解决传统Transformer模型过分关注不相关信息的问题。该机制通过计算两个独立的注意力图谱之差来消除注意力噪声,提高模型性能。实验结果显示,DIFF Transformer在减少参数量和训练token数量的同时,显著提升了多目标检索任务的准确率。
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
SVDQuant是由MIT研究团队推出的扩散模型后训练量化技术,通过将模型的权重和激活值量化至4位,显著减少了内存占用并加速了推理过程。该技术引入了高精度的低秩分支来吸收量化过程中的异常值,支持多种架构,并能无缝集成低秩适配器(LoRAs),为资源受限设备上的大型扩散模型部署提供了有效的解决方案。
免费试用