《用AI重构工业设备故障预警系统:从“被动维修”到“主动预判”的协作实践》
本文记录了为重型机床企业用AI重构故障预警系统的实践。项目初期面临原系统“事后报警”致单月损失超百万、12类传感器数据繁杂但故障样本稀缺、维修经验难转技术指标的困境,传统开发需2个月且准确率难超70%。团队构建Cursor、通义灵码、豆包、DeepSeek协作矩阵,按场景分工:Cursor优化前后端,通义灵码转经验为特征与模型逻辑,豆包拆解需求与生成手册,DeepSeek优化架构与模型性能。系统25天上线,预警准确率92%、提前35分钟,单月停机减60%,挽回损失超60万,还沉淀SOP,印证了AI协同破解工业设备预警困局、实现从被动维修到主动预判的价值。