异构计算

首页 标签 异构计算
# 异构计算 #
关注
18740内容
|
2月前
|
【AI系统】NV Switch 深度解析
英伟达的NVSwitch技术是高性能计算领域的重大突破,旨在解决多GPU系统中数据传输的瓶颈问题。通过提供比PCIe高10倍的带宽,NVLink实现了GPU间的直接数据交换,减少了延迟,提高了吞吐量。NVSwitch则进一步推动了这一技术的发展,支持更多NVLink接口,实现无阻塞的全互联GPU系统,极大提升了数据交换效率和系统灵活性,为构建强大的计算集群奠定了基础。
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
LongRAG:智谱联合清华和中科院推出的双视角鲁棒检索框架
LongRAG是由智谱、清华大学和中国科学院联合推出的双视角鲁棒检索增强生成框架,专为长文本问答设计。该框架通过混合检索器、LLM增强信息提取器、CoT引导过滤器和LLM增强生成器等组件,有效解决了长文本问答中的全局上下文理解和事实细节识别难题。LongRAG在多个数据集上表现优异,提供了自动化微调数据构建管道,增强了系统的“指令跟随”能力和领域适应性。
|
2月前
|
【AI系统】NVLink 原理剖析
随着AI技术的发展,大模型参数量激增,对底层硬件和网络架构提出新挑战。高效训练这些模型需要大规模GPU集群及高速网络连接,以实现快速数据交换。然而,网络瓶颈限制了GPU性能的充分发挥,表明单纯增加GPU数量不能线性提升算力。因此,算存互连和算力互连技术成为关键,如PCIe、NVLink和NVSwitch等,它们通过提高数据传输速度和效率,支持大规模并行计算,解决了大规模GPU集群中的通信延迟问题,推动了万亿级模型训练的实现。
|
2月前
|
【AI系统】分布式通信与 NVLink
进入大模型时代后,AI的核心转向大模型发展,训练这类模型需克服大量GPU资源及长时间的需求。面对单个GPU内存限制,跨多个GPU的分布式训练成为必要,这涉及到分布式通信和NVLink技术的应用。分布式通信允许多个节点协作完成任务,而NVLink则是一种高速、低延迟的通信技术,用于连接GPU或GPU与其它设备,以实现高性能计算。随着大模型的参数、数据规模扩大及算力需求增长,分布式并行策略,如数据并行和模型并行,变得至关重要。这些策略通过将模型或数据分割在多个GPU上处理,提高了训练效率。此外,NVLink和NVSwitch技术的持续演进,为GPU间的高效通信提供了更强的支持,推动了大模型训练的快
|
2月前
|
【AI系统】Tensor Core 深度剖析
Tensor Core 是英伟达 GPU 的关键技术,专为加速深度学习计算设计,尤其擅长矩阵乘法和卷积运算。通过混合精度计算,Tensor Core 使用半精度(FP16)输入输出,内部以全精度(FP32)计算,确保精度同时提高效率。相比传统 CUDA Core,Tensor Core 每个时钟周期可执行 64 个浮点运算,大幅提升计算速度。其工作原理包括指令流水线、线程执行等多级优化,确保高效并行处理。通过分块、分配和并行执行策略,Tensor Core 能有效处理大规模矩阵计算,极大加速神经网络模型的训练和推断。
|
2月前
|
【AI系统】Tensor Core 架构演进
自2017年Volta架构推出以来,英伟达的GPU架构不断进化,从Volta的张量核心(Tensor Core)革新,到Turing的整数格式支持,再到Ampere的稀疏矩阵计算优化,以及Hopper的FP8张量核心和Transformer引擎,直至2024年的Blackwell架构,实现了30倍的LLM推理性能提升。每一代架构都标志着深度学习计算的重大突破,为AI技术的发展提供了强大的硬件支持。
|
2月前
|
【AI系统】Tensor Core 基本原理
本文深入介绍了英伟达GPU中的Tensor Core,一种专为加速深度学习设计的硬件单元。文章从发展历程、卷积计算、混合精度训练及基本原理等方面,详细解析了Tensor Core的工作机制及其在深度学习中的应用,旨在帮助读者全面理解Tensor Core技术。通过具体代码示例,展示了如何在CUDA编程中利用Tensor Core实现高效的矩阵运算,从而加速模型训练和推理过程。
|
2月前
|
【AI系统】GPU 架构回顾(从2018年-2024年)
2018年发布的Turing图灵架构,采用12nm工艺,包含18.6亿个晶体管,大幅提升了PC游戏、专业图形应用及深度学习推理的效率与性能。Turing引入了RT Core和Tensor Core,分别用于实时光线追踪和加速深度学习计算,支持GDDR6内存,显著提升了数据传输速率和效率。此外,Turing架构还支持NVLink 2.0,增强了多GPU协同工作的能力,适用于复杂的图形渲染和深度学习任务。
|
2月前
|
【AI系统】GPU 架构回顾(从2010年-2017年)
自1999年英伟达发明GPU以来,其技术不断革新。本文概述了从2010年至2024年间,英伟达GPU的九代架构演变,包括费米、开普勒、麦克斯韦、帕斯卡、伏特、图灵、安培、赫柏和布莱克韦尔。这些架构不仅在游戏性能上取得显著提升,还在AI、HPC、自动驾驶等领域发挥了重要作用。CUDA平台的持续发展,以及Tensor Core、NVLink等技术的迭代,巩固了英伟达在计算领域的领导地位。
免费试用