✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
MIMO(Multiple-Input Multiple-Output)毫米波信道的集群统计仿真可以用于研究和评估具有多毫米波频段的通信系统中的信道特性。下面是一般的集群统计MIMO毫米波信道仿真步骤:
- 确定场景参数:定义仿真所需的景参数,包括天线数、天线阵列配置、传输距离、环境类型(如室内或室外)、天线间距等。
- 信道模型选择:选择适当的毫米波信道模型。根据仿真需求,常用的信道模型包括几何波束赋形(Geometric Beamforming)模型、综合频率选择法(Sum of Spatially D Clusters)模型等。
- 集群生成:根据选定的信道模型,使用随机过程生成集群参数。这些参数包括集群中心、角度、功率、时延等。
- 毫米波信道建模:基于集群参数,使用合适的信道建模技术生成实际毫米波信道。常用的建模方法包括几何概率建模、物理仿真建模等。
- MIMO信号传输仿真:生成输入信号,并将其通过仿真得到的毫米波信道进行传输。可以使用IMO传输技术,如空时编码(Space-Time Coding)、波束赋形(Beamforming)等。
- 数据处理与分析:对经过信道传输的接收信号进行数据处理和分析,计算性能指标,如比特误码率(Bit Error Rate)、信道容量、信号质量等。
需要注意的是,在进行集群统计MIMO毫米波信道仿真时,可能需要考虑天线阵列的设计、天线间的互相干扰、信号衰落模型、多径传播效应、信道估计等方面的因素。同时,还需要对多个仿真实例进行统计运算,以获得更准确的结果和更全面的性能评估。
具体仿真实现的细节和工具选择取决于您的需求和研究环境。一些常用的工具的NumPy、SciPy和通信系统仿真软件套件等。根据具体的问题和目标,您可以探索和选择适合您的仿真平台和相关工具。
⛄ 部分代码
% This Matlab script can be used to generate Figure 2 (b) in:%% S. Buzzi, C. D'Andrea , "On Clustered Statistical MIMO Millimeter Wave Channel Simulation",% submitted to IEEE Wireless Communications Letters%% In this Figure we show the CDFs of Spectral Efficiency in mmWave% Channel with channel response generate as in expression (1) varying% number of symbols transmit simultaneously on the MIMO channel with Nt=30% and Nr=20 with 0 dBW as value of transmit power, with two different link lengths.%% License: This code is licensed under the GPLv2 License.If you in any way % use this code for research that results in publications, please cite our% original article listed above.clear allclose allclctic%% Parameter for transmitter and receiver planar arrays Yt=5; % number of transmit antennas on the y-axis of planar arrayZt=6; % number of transmit antennas on the z-axis of planar arrayYr=5; % number of receiver antennas on the y-axis of planar arrayZr=4; % number of receiver antennas on the z-axis of planar arrayNr=Yr*Zr; % number of antennas of the transmit arrayNt=Yt*Zt; % number of antennas of the receive arrayf=73e09; % carrier frequency% Positions of transmitter and receiver in 3-D planeTX_pos=[0 0 7];RX_pos_1=[5 0 1];RX_pos_2=[60 0 1];scenario=2; % UMi-Street Canyon%% Parameters of the filter % We consider RRC pulses as transmitt and receive shaping pulses R=0.22; % roll off factorN=32; % downsampling factorW=500e6;T_symbol=(1+R)/W; % symbol timeTs=T_symbol/N; % sampling time for the filtertt=linspace(-4,4,8*N+1); Tc=T_symbol; % sampling time for the output of the receive filter %% Generation of transmit and receive shaping pulse% We use RRC shaping filters% RRC transmitter shaping filterlen=length(tt);rrc_t=zeros(len,1);for i=1:len t=tt(i); if(t==0) rrc_t(i)= ( 1-R+4*R/pi ) ; elseif(abs(abs(t)-1/4/R)<1e-3) rrc_t(i)= ( cos(pi*t*(1-R))*pi*(1-R) + 4*R*cos(pi*t*(1+R)) - 4*R*t*sin(pi*t*(1+R))*(pi*(1+R)) )/(pi)/(1-3*(4*R*t)^2 ) ; else rrc_t(i)= ( sin(pi*t*(1-R))+4*R*t*cos(pi*t*(1+R)) ) / ( pi*t*(1- (4*R*t)^2) ); endend% Normalization of filter as unitary energy filterE_rrc_t=rrc_t'*rrc_t;rrc_t=rrc_t/sqrt(E_rrc_t);% RRC receive shaping filterrrc_r=rrc_t; % Convolution between receiver and transmitter shaping filters and% normalizationh_r_t=conv(rrc_t,rrc_r);E_h=h_r_t'*h_r_t;h_r_t=h_r_t/sqrt(E_h);%% Noise variancenoise_figure=3; % noise figure of the receiver in dBN0=-174;% PSD noise in dBm/Hznoise_variance=W*10^(0.1*noise_figure)*10^(0.1*N0)*10^-3; % F*N0*B%% Calculation of Spectral EfficiencyN_channels=10000;Pt_dB=0;% number of symbols transmitting on the channel simultaneouslyM_1=2; M_2=4;M_3=6;M_4=8;% Initializing variablesSE1_1=zeros(N_channels,1);SE2_1=zeros(N_channels,1);SE3_1=zeros(N_channels,1);SE4_1=zeros(N_channels,1);SE1_2=zeros(N_channels,1);SE2_2=zeros(N_channels,1);SE3_2=zeros(N_channels,1);SE4_2=zeros(N_channels,1);for ch=1:N_channels % Generation of Channel matrix LTI with RX_pos_1 H_frequency_selective_LTI=Generate_Channel_frequency_selective_LTI(f,TX_pos,RX_pos_1,scenario,Yt,Zt,Yr,Zr,h_r_t,Ts,Tc); % Spectral Efficiencies SE1_1(ch,1)= Spectral_efficiency( H_frequency_selective_LTI,Nr,Nt, Pt_dB, M_1 ,noise_variance,rrc_r,N,W,T_symbol); SE2_1(ch,1)= Spectral_efficiency( H_frequency_selective_LTI,Nr,Nt, Pt_dB, M_2 ,noise_variance,rrc_r,N,W,T_symbol); SE3_1(ch,1)= Spectral_efficiency( H_frequency_selective_LTI,Nr,Nt, Pt_dB, M_3 ,noise_variance,rrc_r,N,W,T_symbol); SE4_1(ch,1)= Spectral_efficiency( H_frequency_selective_LTI,Nr,Nt, Pt_dB, M_4 ,noise_variance,rrc_r,N,W,T_symbol); % Generation of Channel matrix LTI with RX_pos_2 H_frequency_selective_LTI_2=Generate_Channel_frequency_selective_LTI(f,TX_pos,RX_pos_2,scenario,Yt,Zt,Yr,Zr,h_r_t,Ts,Tc); SE1_2(ch,1)= Spectral_efficiency( H_frequency_selective_LTI_2,Nr,Nt, Pt_dB, M_1 ,noise_variance,rrc_r,N,W,T_symbol); SE2_2(ch,1)= Spectral_efficiency( H_frequency_selective_LTI_2,Nr,Nt, Pt_dB, M_2 ,noise_variance,rrc_r,N,W,T_symbol); SE3_2(ch,1)= Spectral_efficiency( H_frequency_selective_LTI_2,Nr,Nt, Pt_dB, M_3 ,noise_variance,rrc_r,N,W,T_symbol); SE4_2(ch,1)= Spectral_efficiency( H_frequency_selective_LTI_2,Nr,Nt, Pt_dB, M_4 ,noise_variance,rrc_r,N,W,T_symbol);end%% Calculation of Empirical CDFs of Spectral Efficiencies[ x1_1,CDF1_1] = Empirical_CDF(SE1_1);[ x2_1,CDF2_1] = Empirical_CDF(SE2_1);[ x3_1,CDF3_1] = Empirical_CDF(SE3_1);[ x4_1,CDF4_1] = Empirical_CDF(SE4_1);[ x1_2,CDF1_2] = Empirical_CDF(SE1_2);[ x2_2,CDF2_2] = Empirical_CDF(SE2_2);[ x3_2,CDF3_2] = Empirical_CDF(SE3_2);[ x4_2,CDF4_2] = Empirical_CDF(SE4_2);%% Save Resultssave('Results_Figure_2b');%% Figure figureplot(x1_1,CDF1_1,'LineWidth',2);hold onplot(x2_1,CDF2_1,'r','LineWidth',2);hold onplot(x3_1,CDF3_1,'g','LineWidth',2);hold onplot(x4_1,CDF4_1,'k','LineWidth',2);hold onplot(x1_2,CDF1_2,'b--','LineWidth',2);hold onplot(x2_2,CDF2_2,'r--','LineWidth',2);hold onplot(x3_2,CDF3_2,'g--','LineWidth',2);hold onplot(x4_2,CDF4_2,'k--','LineWidth',2);grid onxlabel('Spectral efficiency [bit/s/Hz]','FontSize',12);ylabel('CDF','FontSize',12);AX=legend('M=2,d=10 m','M=4,d=10 m','M=6,d=10 m','M=8,d=10 m','M=2,d=60 m','M=4,d=60 m','M=6,d=60 m','M=8,d=60 m','Location', 'SouthEast');LEG = findobj(AX,'type','text');set(LEG,'FontSize',12)lim_x=max([max(x1_1) max(x2_1) max(x3_1) max(x4_1) max(x1_2) max(x2_2) max(x3_2) max(x4_2)]);xlim([0 lim_x]);toc
⛄ 运行结果
⛄ 参考文献
[1] Buzzi S , D'Andrea C .On Clustered Statistical MIMO Millimeter Wave Channel Simulation.2016[2023-06-28].DOI:10.48550/arXiv.1604.00648.