基于PSO粒子群优化的配电网可靠性指标matlab仿真

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。

1.程序功能描述
基于PSO粒子群优化的配电网可靠性指标matlab仿真,指标包括saifi, saidi, caidi, aens四个。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

1.jpeg
2.jpeg
3.jpeg

3.核心程序
```% 初始化种群并评估初始适应度
% 初始化最佳成本记录数组
ybest = zeros(Miter,1);
for it =1:Miter
it% 显示当前迭代次数
for i =1:Npop
% 更新粒子速度和位置
Ptls2(i).v = wPtls2(i).v+c1rand(Ptls2(i).best.pos-Ptls2(i).pos)+c2rand*(Gbest.pos-Ptls2(i).pos);
Ptls2(i).pos = Ptls2(i).pos+Ptls2(i).v;
end

figure;
plot(ybest,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('迭代次数');
ylabel('最佳成本');

%可靠性指标计算结果
load OPT1.mat
saifi1=idx.SAIFI
saidi1=idx.SAIDI
caidi1=idx.CAIDI
aens1=idx.AENS

load OPT50.mat
saifi2=idx.SAIFI
saidi2=idx.SAIDI
caidi2=idx.CAIDI
aens2=idx.AENS

V1=[saifi1,saidi1,caidi1,aens1];
V2=[saifi2,saidi2,caidi2,aens2];

figure;
bar([V1;V2]');
xlabel('1:saifi, 2:saidi, 3:caidi, 4:aens');
ylabel('可靠性指标');
legend('优化前','优化后');
49

```

4.本算法原理
配电网可靠性指标是衡量电力系统在一定时间内向用户提供连续、稳定电能能力的重要参数。PSO(Particle Swarm Optimization,粒子群优化)作为一种全局优化算法,常被应用于优化配电网结构,以提高这些可靠性指标。以下是基于PSO的配电网可靠性优化中涉及的四个主要指标(SAIFI、SAIDI、CAIDI、ENS)的详细介绍,以及它们的数学表达式和如何通过PSO进行优化的原理说明。

   SAIFI(System Average Interruption Frequency Index,系统平均中断频率指数)SAIFI用来衡量平均每用户一年内会遇到的停电次数。其计算公式为:

891a942adc33b6606ddf1c7ce7f7a14d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,N 是用户总数,ni​ 是第i个用户的停电次数。通过PSO优化,目标是寻找最优化的网络配置(如线路布局、备用资源分配等),使得SAIFI最小化。

   SAIDI(System Average Interruption Duration Index,系统平均中断持续时间指数)SAIDI反映的是平均每用户在一年内的停电总时长。其数学表达式为:

c5189b4e1bde98bccab16216abc99959_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

这里,di​ 表示第i个用户在一年内的累计停电时间。通过调整配电网的拓扑结构和设备配置,PSO算法旨在找到使SAIDI达到最低的方案,从而提升供电的连续性。

   CAIDI(Customer Average Interruption Duration Index,用户平均中断持续时间指数)CAIDI衡量的是在发生停电的情况下,平均每用户会经历的停电时间。它与SAIDI不同之处在于考虑了停电事件的频率。CAIDI的定义为:

375d17ddf7f8c6305fa4f134dc9f903f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

通过PSO算法,可以通过优化网络的冗余度和故障恢复策略,减少每次停电的影响时间,进而降低CAIDI。

   ENS(Energy Not Supplied,未供应能量)ENS直接量化了因系统故障导致未能向用户提供的总能量,单位通常为MWh。其计算公式为:

9d7fae3966d8e0cb6d307f430b72b1d9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,ei​ 是第i次停电事件中未能供应的能量。通过PSO优化配电网的布局和维护策略,可以减少ENS,提高系统的整体能源供应效率。

4.1 PSO算法应用于配电网优化的基本原理
PSO算法模拟鸟群的社会行为,每个粒子代表一个潜在的解决方案,即配电网的一种配置。每个粒子的位置向量xi​对应于电网的某些参数(例如,变电站位置、线路容量等),速度向量vi​则指导着搜索方向。算法的目标是最小化一个或多个目标函数,如上述的可靠性指标。
925446a0e2b50c6a745eddbf6e7aabed_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  其中,ω是惯性权重,c1​和c2​是加速因子,r1​和r2​是[0,1]之间的随机数,用于增加搜索的随机性。通过不断迭代,粒子群逐渐收敛于全局最优解或一组接近最优的解,从而实现对配电网的优化设计,提升系统的可靠性和经济性。
相关文章
|
28天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
28天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
138 68
|
30天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
28天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
51 18
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
161 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
136 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)