基于PSO粒子群优化的配电网可靠性指标matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。

1.程序功能描述
基于PSO粒子群优化的配电网可靠性指标matlab仿真,指标包括saifi, saidi, caidi, aens四个。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

1.jpeg
2.jpeg
3.jpeg

3.核心程序
```% 初始化种群并评估初始适应度
% 初始化最佳成本记录数组
ybest = zeros(Miter,1);
for it =1:Miter
it% 显示当前迭代次数
for i =1:Npop
% 更新粒子速度和位置
Ptls2(i).v = wPtls2(i).v+c1rand(Ptls2(i).best.pos-Ptls2(i).pos)+c2rand*(Gbest.pos-Ptls2(i).pos);
Ptls2(i).pos = Ptls2(i).pos+Ptls2(i).v;
end

figure;
plot(ybest,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('迭代次数');
ylabel('最佳成本');

%可靠性指标计算结果
load OPT1.mat
saifi1=idx.SAIFI
saidi1=idx.SAIDI
caidi1=idx.CAIDI
aens1=idx.AENS

load OPT50.mat
saifi2=idx.SAIFI
saidi2=idx.SAIDI
caidi2=idx.CAIDI
aens2=idx.AENS

V1=[saifi1,saidi1,caidi1,aens1];
V2=[saifi2,saidi2,caidi2,aens2];

figure;
bar([V1;V2]');
xlabel('1:saifi, 2:saidi, 3:caidi, 4:aens');
ylabel('可靠性指标');
legend('优化前','优化后');
49

```

4.本算法原理
配电网可靠性指标是衡量电力系统在一定时间内向用户提供连续、稳定电能能力的重要参数。PSO(Particle Swarm Optimization,粒子群优化)作为一种全局优化算法,常被应用于优化配电网结构,以提高这些可靠性指标。以下是基于PSO的配电网可靠性优化中涉及的四个主要指标(SAIFI、SAIDI、CAIDI、ENS)的详细介绍,以及它们的数学表达式和如何通过PSO进行优化的原理说明。

   SAIFI(System Average Interruption Frequency Index,系统平均中断频率指数)SAIFI用来衡量平均每用户一年内会遇到的停电次数。其计算公式为:

891a942adc33b6606ddf1c7ce7f7a14d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,N 是用户总数,ni​ 是第i个用户的停电次数。通过PSO优化,目标是寻找最优化的网络配置(如线路布局、备用资源分配等),使得SAIFI最小化。

   SAIDI(System Average Interruption Duration Index,系统平均中断持续时间指数)SAIDI反映的是平均每用户在一年内的停电总时长。其数学表达式为:

c5189b4e1bde98bccab16216abc99959_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

这里,di​ 表示第i个用户在一年内的累计停电时间。通过调整配电网的拓扑结构和设备配置,PSO算法旨在找到使SAIDI达到最低的方案,从而提升供电的连续性。

   CAIDI(Customer Average Interruption Duration Index,用户平均中断持续时间指数)CAIDI衡量的是在发生停电的情况下,平均每用户会经历的停电时间。它与SAIDI不同之处在于考虑了停电事件的频率。CAIDI的定义为:

375d17ddf7f8c6305fa4f134dc9f903f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

通过PSO算法,可以通过优化网络的冗余度和故障恢复策略,减少每次停电的影响时间,进而降低CAIDI。

   ENS(Energy Not Supplied,未供应能量)ENS直接量化了因系统故障导致未能向用户提供的总能量,单位通常为MWh。其计算公式为:

9d7fae3966d8e0cb6d307f430b72b1d9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,ei​ 是第i次停电事件中未能供应的能量。通过PSO优化配电网的布局和维护策略,可以减少ENS,提高系统的整体能源供应效率。

4.1 PSO算法应用于配电网优化的基本原理
PSO算法模拟鸟群的社会行为,每个粒子代表一个潜在的解决方案,即配电网的一种配置。每个粒子的位置向量xi​对应于电网的某些参数(例如,变电站位置、线路容量等),速度向量vi​则指导着搜索方向。算法的目标是最小化一个或多个目标函数,如上述的可靠性指标。
925446a0e2b50c6a745eddbf6e7aabed_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  其中,ω是惯性权重,c1​和c2​是加速因子,r1​和r2​是[0,1]之间的随机数,用于增加搜索的随机性。通过不断迭代,粒子群逐渐收敛于全局最优解或一组接近最优的解,从而实现对配电网的优化设计,提升系统的可靠性和经济性。
相关文章
|
22天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
2月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
7月前
|
算法
基于改进粒子群算法的混合储能系统容量优化matlab
基于改进粒子群算法的混合储能系统容量优化matlab
|
4月前
|
算法 数据可视化 调度
基于PSO粒子群优化的车间调度问题求解matlab仿真,输出甘特图
基于PSO粒子群优化的MATLAB仿真解决车间调度问题,输入机器与工作完成时间,输出甘特图与收敛图,实现多机器多任务最优并行调度。使用MATLAB 2022a版本运行,通过模拟鸟群觅食行为,不断更新粒子速度与位置寻找最优解,采用工序编码,总加工时间为适应度函数,实现快速收敛并可视化调度结果。
188 16
|
3月前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
6月前
|
算法
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
7月前
|
算法
考虑源荷不确定性的微网优化(含matlab程序)
考虑源荷不确定性的微网优化(含matlab程序)
|
机器学习/深度学习 传感器 算法
旗鱼优化(SFO)算法附matlab代码
旗鱼优化(SFO)算法附matlab代码
配电网可靠性评估(二)—序贯蒙特卡洛模拟法的matlab实现
电力系统的可靠性研究是相关领域的热点问题。根据研究对象的不同,又可分为发电系统的可靠性,输电系统的可靠性和配电系统的可靠性。配电网在电力系统中处于最末端的位置,直接和用户相连,一旦出现故障情况,就会在用户侧表现为停电事故。因此对配电网的可靠性评估有着重大意义。
|
算法 语音技术
配电网可靠性评估(一)—最小路法和非序贯蒙特卡洛模拟法的matlab实现
电力系统的可靠性研究是相关领域的热点问题。根据研究对象的不同,又可分为发电系统的可靠性,输电系统的可靠性和配电系统的可靠性。配电网在电力系统中处于最末端的位置,直接和用户相连,一旦出现故障情况,就会在用户侧表现为停电事故。因此对配电网的可靠性评估有着重大意义。