基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面

简介: 本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
YOLOv4 是一种先进的目标检测算法,将其应用于公共场所人流密度检测系统具有高效、准确的特点。以下是该系统的详细原理:

特征提取:

   使用卷积神经网络(CNN)对输入的图像进行特征提取。CNN 由多个卷积层和池化层组成,卷积层通过卷积核与输入图像进行卷积操作,提取图像的局部特征,如边缘、纹理、颜色等。池化层则用于降低特征图的分辨率,减少计算量和参数数量,同时保留主要的特征信息。常见的池化方法有最大池化和平均池化。

   随着网络的深入,提取到的特征逐渐从低级特征(如简单的边缘和纹理)转变为高级特征(如物体的形状、轮廓等)。这些高级特征对于准确检测人流中的个体非常重要。

网格划分与预测:

   将输入图像划分为多个网格(grid cell)。每个网格负责预测落入该网格内的物体的相关信息,包括物体的边界框(bounding box)位置、类别概率等。例如,如果将图像划分为 7x7 的网格,那么就有 49 个网格单元,每个网格单元都可以预测是否存在物体以及物体的具体信息。

   对于每个网格,YOLOv4 会预测多个边界框。每个边界框包含了物体的位置信息,通常用中心点坐标(x, y)、宽度(w)和高度(h)来表示。这些预测的边界框可以覆盖整个图像的不同区域,以确保能够检测到不同位置和大小的物体。

目标检测与识别:

   将公共场所的图像输入到基于 YOLOv4 的检测系统中,系统首先利用上述的特征提取、网格划分和预测过程,检测出图像中的行人。通过对行人的边界框位置和类别概率的预测,可以准确地识别出图像中的行人个体。

  在检测过程中,YOLOv4 会利用预训练的模型权重。预训练模型是在大规模的图像数据集上进行训练得到的,已经学习到了通用的图像特征和物体的模式,因此可以快速准确地对新的图像进行检测。

人流密度计算:

   基于检测到的行人边界框信息,可以计算人流密度。一种简单的方法是统计图像中检测到的行人数量,并根据图像的面积或特定的检测区域面积来计算行人的密度。例如,如果在一个 100 平方米的区域内检测到了 50 个人,那么人流密度可以表示为 0.5 人/平方米。

  为了提高人流密度计算的准确性,可以对图像进行分区域计算。将图像划分为多个小区域,分别计算每个区域内的人流密度,然后综合考虑各个区域的密度情况,得到整个公共场所的人流密度分布。这样可以更细致地了解不同区域的人流情况,对于发现人流密集区域和潜在的安全隐患非常有帮助。

   基于 YOLOv4 的公共场所人流密度检测系统通过深度学习技术,能够快速准确地检测出公共场所中的行人,并计算出人流密度,为公共场所的管理和安全保障提供了有力的支持。在实际应用中,还需要对系统进行不断的优化和调整,以适应不同的场景和需求。

3.MATLAB核心程序
```% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @tops_OpeningFcn, ...
'gui_OutputFcn', @tops_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before tops is made visible.
function tops_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to tops (see VARARGIN)

% Choose default command line output for tops
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes tops wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = tops_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
global str;
global flag1;
global flag2;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit12,'string','图片读取中......');

[name,dir,index]=uigetfile({'*.jpg'},'图片视频');
if index==1 %如果选择打开文件
str=[dir name]; %字符串拼接
im=imread(str); %读取图片,保存到全局变量中。
axes(handles.axes1);
imshow(im);
end
set(handles.edit12,'string','图片读取完毕.....');

flag1=1;
flag2=0;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global v;
global str;
global flag1;
global flag2;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit12,'string','视频读取中......');

[name,dir,index]=uigetfile({'*.avi'},'选择视频');
if index==1 %如果选择打开文件
str=[dir name]; %字符串拼接
v=VideoReader(str); %读取图片,保存到全局变量中。
axes(handles.axes1);

video1 = readFrame(v);%读取视频帧的图像像素数据
[rr,cc,kk] = size(video1);
imshow(video1);

end
set(handles.edit12,'string','视频读取完毕.....');

flag1=0;
flag2=1;

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global v;
global im;
global str;
global flag1;
global flag2;
0Y_030m
```

相关文章
|
7天前
|
存储 运维 安全
云上金融量化策略回测方案与最佳实践
2024年11月29日,阿里云在上海举办金融量化策略回测Workshop,汇聚多位行业专家,围绕量化投资的最佳实践、数据隐私安全、量化策略回测方案等议题进行深入探讨。活动特别设计了动手实践环节,帮助参会者亲身体验阿里云产品功能,涵盖EHPC量化回测和Argo Workflows量化回测两大主题,旨在提升量化投研效率与安全性。
云上金融量化策略回测方案与最佳实践
|
9天前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
8503 20
|
13天前
|
Cloud Native Apache 流计算
资料合集|Flink Forward Asia 2024 上海站
Apache Flink 年度技术盛会聚焦“回顾过去,展望未来”,涵盖流式湖仓、流批一体、Data+AI 等八大核心议题,近百家厂商参与,深入探讨前沿技术发展。小松鼠为大家整理了 FFA 2024 演讲 PPT ,可在线阅读和下载。
4568 11
资料合集|Flink Forward Asia 2024 上海站
|
13天前
|
自然语言处理 数据可视化 API
Qwen系列模型+GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。
|
21天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
9天前
|
人工智能 容器
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
本文介绍了如何利用千问开发一款情侣刮刮乐小游戏,通过三步简单指令实现从单个功能到整体框架,再到多端优化的过程,旨在为生活增添乐趣,促进情感交流。在线体验地址已提供,鼓励读者动手尝试,探索编程与AI结合的无限可能。
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
|
1月前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
104589 10
|
8天前
|
消息中间件 人工智能 运维
12月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
731 45
|
6天前
|
弹性计算 运维 监控
阿里云云服务诊断工具:合作伙伴架构师的深度洞察与优化建议
作为阿里云的合作伙伴架构师,我深入体验了其云服务诊断工具,该工具通过实时监控与历史趋势分析,自动化检查并提供详细的诊断报告,极大提升了运维效率和系统稳定性,特别在处理ECS实例资源不可用等问题时表现突出。此外,它支持预防性维护,帮助识别潜在问题,减少业务中断。尽管如此,仍建议增强诊断效能、扩大云产品覆盖范围、提供自定义诊断选项、加强教育与培训资源、集成第三方工具,以进一步提升用户体验。
640 243
|
3天前
|
弹性计算 运维 监控
云服务测评 | 基于云服务诊断全方位监管云产品
本文介绍了阿里云的云服务诊断功能,包括健康状态和诊断两大核心功能。作者通过个人账号体验了该服务,指出其在监控云资源状态和快速排查异常方面的优势,同时也提出了一些改进建议,如增加告警配置入口和扩大诊断范围等。