基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面

简介: 本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
YOLOv4 是一种先进的目标检测算法,将其应用于公共场所人流密度检测系统具有高效、准确的特点。以下是该系统的详细原理:

特征提取:

   使用卷积神经网络(CNN)对输入的图像进行特征提取。CNN 由多个卷积层和池化层组成,卷积层通过卷积核与输入图像进行卷积操作,提取图像的局部特征,如边缘、纹理、颜色等。池化层则用于降低特征图的分辨率,减少计算量和参数数量,同时保留主要的特征信息。常见的池化方法有最大池化和平均池化。

   随着网络的深入,提取到的特征逐渐从低级特征(如简单的边缘和纹理)转变为高级特征(如物体的形状、轮廓等)。这些高级特征对于准确检测人流中的个体非常重要。

网格划分与预测:

   将输入图像划分为多个网格(grid cell)。每个网格负责预测落入该网格内的物体的相关信息,包括物体的边界框(bounding box)位置、类别概率等。例如,如果将图像划分为 7x7 的网格,那么就有 49 个网格单元,每个网格单元都可以预测是否存在物体以及物体的具体信息。

   对于每个网格,YOLOv4 会预测多个边界框。每个边界框包含了物体的位置信息,通常用中心点坐标(x, y)、宽度(w)和高度(h)来表示。这些预测的边界框可以覆盖整个图像的不同区域,以确保能够检测到不同位置和大小的物体。

目标检测与识别:

   将公共场所的图像输入到基于 YOLOv4 的检测系统中,系统首先利用上述的特征提取、网格划分和预测过程,检测出图像中的行人。通过对行人的边界框位置和类别概率的预测,可以准确地识别出图像中的行人个体。

  在检测过程中,YOLOv4 会利用预训练的模型权重。预训练模型是在大规模的图像数据集上进行训练得到的,已经学习到了通用的图像特征和物体的模式,因此可以快速准确地对新的图像进行检测。

人流密度计算:

   基于检测到的行人边界框信息,可以计算人流密度。一种简单的方法是统计图像中检测到的行人数量,并根据图像的面积或特定的检测区域面积来计算行人的密度。例如,如果在一个 100 平方米的区域内检测到了 50 个人,那么人流密度可以表示为 0.5 人/平方米。

  为了提高人流密度计算的准确性,可以对图像进行分区域计算。将图像划分为多个小区域,分别计算每个区域内的人流密度,然后综合考虑各个区域的密度情况,得到整个公共场所的人流密度分布。这样可以更细致地了解不同区域的人流情况,对于发现人流密集区域和潜在的安全隐患非常有帮助。

   基于 YOLOv4 的公共场所人流密度检测系统通过深度学习技术,能够快速准确地检测出公共场所中的行人,并计算出人流密度,为公共场所的管理和安全保障提供了有力的支持。在实际应用中,还需要对系统进行不断的优化和调整,以适应不同的场景和需求。

3.MATLAB核心程序
```% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @tops_OpeningFcn, ...
'gui_OutputFcn', @tops_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before tops is made visible.
function tops_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to tops (see VARARGIN)

% Choose default command line output for tops
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes tops wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = tops_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
global str;
global flag1;
global flag2;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit12,'string','图片读取中......');

[name,dir,index]=uigetfile({'*.jpg'},'图片视频');
if index==1 %如果选择打开文件
str=[dir name]; %字符串拼接
im=imread(str); %读取图片,保存到全局变量中。
axes(handles.axes1);
imshow(im);
end
set(handles.edit12,'string','图片读取完毕.....');

flag1=1;
flag2=0;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global v;
global str;
global flag1;
global flag2;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit12,'string','视频读取中......');

[name,dir,index]=uigetfile({'*.avi'},'选择视频');
if index==1 %如果选择打开文件
str=[dir name]; %字符串拼接
v=VideoReader(str); %读取图片,保存到全局变量中。
axes(handles.axes1);

video1 = readFrame(v);%读取视频帧的图像像素数据
[rr,cc,kk] = size(video1);
imshow(video1);

end
set(handles.edit12,'string','视频读取完毕.....');

flag1=0;
flag2=1;

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global v;
global im;
global str;
global flag1;
global flag2;
0Y_030m
```

相关文章
|
2天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
53 18
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
113 10
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章