基于WOA算法的SVDD参数寻优matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。

1.程序功能描述
基于WOA算法的SVDD参数寻优,将优化后的SVDD模型进行数据分类,并对测试数据进行抗干扰测试,得到不同干扰下的分类误差曲线。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

1.jpeg
2.jpeg
3.jpeg

3.核心程序

    % 更新搜索代理的位置
    for i=1:size(Pxy,1)
        r1=rand();  
        r2=rand(); 

        A=2*a*r1-a;  
        C=2*r2;      


        b=1;               
        l=(a2-1)*rand+1;   

        p = rand();        

        for j=1:size(Pxy,2)

            if p<0.5   
                if abs(A)>=1% 随机选择一个领导者的索引
                    rand_leader_index = floor(Npop*rand()+1);
                    X_rand = Pxy(rand_leader_index, :);
                    D_X_rand=abs(C*X_rand(j)-Pxy(i,j));  
                    Pxy(i,j)=X_rand(j)-A*D_X_rand;      

                elseif abs(A)<1
                    D_Leader=abs(C*Xbest(j)-Pxy(i,j));  
                    Pxy(i,j)=Xbest(j)-A*D_Leader;      
                end

            elseif p>=0.5

                distance2Leader=abs(Xbest(j)-Pxy(i,j));

                Pxy(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Xbest(j);

            end

        end
    end
    t=t+1;
    yline(t)=Ybest;% 输出当前迭代次数和最佳成绩

end


SNR = [0:1:60];

for ij = 1:length(SNR)
    for j = 1:50
    testdata2 = awgn(testdata,SNR(ij),'measured');
    %使用最优模型进行测试
    [predictlabel, accuracy, ~] = libsvmpredict(testlabel, testdata2, model);
    error(ij,j) = mean((testlabel-predictlabel));
    end
end



figure;
plot(SNR,mean(error,2),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
xlabel('SNR');
ylabel('预测误差');
44

4.本算法原理
鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种模拟鲸鱼捕食行为的智能优化算法,近年来在诸多领域得到广泛应用,其中包括支持向量数据描述(Support Vector Data Description, SVDD)模型的参数寻优。SVDD是一种基于核方法的非线性单类分类模型,通过寻找最小体积的超球体来包容训练样本,从而实现对正常数据的描述。然而,SVDD的性能很大程度上取决于其模型参数的选择,例如惩罚因子C和核函数参数γ。

   WOA模拟了鲸鱼觅食过程中两种主要的行为模式:觅食猎物(Bubble-net Foraging)和搜索分散猎物(Encircling Prey)。算法通过更新搜索代理的位置,逐步逼近全局最优解。对于第i个搜索代理,其位置更新公式如下:

752f7e6d7b0ca4dcb4d6a995b74d22f9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   将SVDD的参数向量Θ=[C,γ]视为WOA算法的搜索空间,通过迭代优化找到最优的参数组合。具体步骤如下:

初始化WOA算法参数(如种群大小、最大迭代次数、参数边界等),并随机初始化各个搜索代理的位置(即不同的SVDD参数组合)。

应用WOA更新规则,对每一个搜索代理的参数向量进行迭代优化。每次迭代过程中,计算当前参数组合下的SVDD模型性能(如泛化能力、轮廓系数等),并将最优参数对应的搜索代理设置为新的全局最优解。

当达到最大迭代次数或满足停止准则时,输出全局最优解所对应的SVDD参数组合。

相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
2天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
12天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
13天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
13天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
11天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
10天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
16天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
15天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
15天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。