通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。

1.程序功能描述
分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法.对比其优化收敛曲线。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行
1.jpeg
2.jpeg
3.jpeg
4.jpeg

3.核心程序

```for t=1:tmax
t
time(t) = t;
w = 0.5;
for i=1:Pop
if t > 1
%N
x(1,i) = x_(1,i);
x_best(1,i) = xbest(1,i);
%I
y(1,i) = y_(1,i);
y_best(1,i) = ybest(1,i);
end
%N
%速度1设置
va(1,i) = wva(1,i) + c1rand(1)(x_best(1,i)-x(1,i)) + c2rand(1)*(Tx_best-x(1,i));
%更新
x(1,i) = x(1,i) + va(1,i);
%变量1的限制
if x(1,i) >= max1
x(1,i) = max1;
end
if x(1,i) <= min1
x(1,i) = min1;
end

    %I
    %速度2设置
    vb(1,i) = w*vb(1,i) + c1*rand(1)*(y_best(1,i)-y(1,i)) + c2*rand(1)*(Ty_best-y(1,i));
    %更新
    y(1,i)  = y(1,i) + vb(1,i);
    %变量2的限制
    if y(1,i) >= max2
       y(1,i) = max2;
    end
    if y(1,i) <= min2
       y(1,i) = min2;
    end                            

   [BsJ,x(1,i),y(1,i)] = func_fitness(x(1,i),y(1,i));  

    if BsJ<BsJi(i)
       BsJi(i)        = BsJ;
       x_best(1,i)    = x(1,i);
       y_best(1,i)    = y(1,i);
    end
    if BsJi(i)<minJi
       minJi      = BsJi(i);
       Tx_best    = x(1,i);
       Ty_best    = y(1,i);
    end
    %反向
    %反向学习
    %N
    x_(1,i)         = (max1+min1)-x(1,i);
    x_best_(1,i)    = (max1+min1)-x_best(1,i);
    %I
    y_(1,i)         = (max2+min2)-y(1,i);
    y_best_(1,i)    = (max2+min2)-y_best(1,i);

   [BsJ,x(1,i),y(1,i)] = func_fitness(x_(1,i),y_(1,i));

    if BsJ<BsJi(i)
       BsJi(i)        = BsJ;
       x_best(1,i)    = x_(1,i);
       y_best(1,i)    = y_(1,i);
    end
    if BsJi(i)<minJi
       minJi      = BsJi(i);
       Tx_best    = x_(1,i);
       Ty_best    = y_(1,i);
    end
end
Jibest(t) = minJi;

end
Tx_best
Ty_best
figure;
plot(Jibest,'b','linewidth',1);
xlabel('迭代次数');
ylabel('J');
grid on

save R2.mat Jibest

```

4.本算法原理
4.1 粒子群优化算法 (PSO)
粒子群优化算法模拟鸟群或鱼群的社会行为,通过迭代搜索最优解。在n维搜索空间中,每一个粒子代表一个潜在解,并具有速度和位置属性。在每次迭代过程中,粒子根据自身的历史最优位置(个体极值pi​)和全局最优位置(全局极值g)更新自己的速度和位置。

4.2 反向学习粒子群优化算法 (OPSO)
反向学习PSO是在传统PSO基础上引入了反向学习机制,当搜索过程陷入局部最优时,通过回溯过去的最优解来调整粒子的速度和方向,从而增加跳出局部最优的可能性。

   改进要点: RL-PSO会在适当的时候启用反向学习阶段,此时速度更新会参考历史最优位置而非当前最优位置,具体数学表达式因不同实现方式而异,但一般包含对过去优良解的记忆和利用。

4.3 多策略改进反向学习粒子群优化算法 (MSO-PSO)
MSO-PSO融合了多种策略并结合反向学习的思想,进一步增强算法的全局搜索能力和收敛速度。例如,可能结合自适应权重调整、动态邻域搜索、精英保留策略等。

相关文章
|
机器学习/深度学习 算法
基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM
基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM
|
机器学习/深度学习 算法
【MATLAB第51期】基于MATLAB的WOA-ORELM-LSTM多输入单输出回归预测模型,鲸鱼算法WOA优化异常鲁棒极限学习机ORELM超参数,修正LSTM残差
残差修正一般适用于LSTM参数较好,数据集较好的情况。在此基础上,若通过进化算法优化LSTM参数会增加运行工作量。而残差修正一般适用于时间序列预测,用进化算法优化残差修正模型比深度学习模型的收敛速度快不少。残差修正后的结果,也可以对未来进行修正预测,但是研究意义大于实用意义。
【MATLAB第51期】基于MATLAB的WOA-ORELM-LSTM多输入单输出回归预测模型,鲸鱼算法WOA优化异常鲁棒极限学习机ORELM超参数,修正LSTM残差
|
7月前
|
机器学习/深度学习 算法
【Matlab智能算法】PSO优化(双隐层)BP神经网络算法
【Matlab智能算法】PSO优化(双隐层)BP神经网络算法
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
4月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
7月前
|
机器学习/深度学习 算法
【Matlab智能算法】PSO优化(单隐层)BP神经网络算法
【Matlab智能算法】PSO优化(单隐层)BP神经网络算法
|
6月前
|
算法 调度 决策智能
基于GA-PSO遗传粒子群混合优化算法的DVRP问题求解matlab仿真
该文介绍了车辆路径问题(VRP)的优化求解,特别是动态车辆路径问题(DVRP)。在MATLAB2022a中运用GA-PSO混合优化算法进行测试,展示了运行结果图像。核心程序包含粒子更新、交叉、距离计算等步骤。DVRP在物流配送、运输调度中有广泛应用,目标是最小化行驶距离并满足车辆容量限制。遗传算法通过选择、交叉和变异操作寻找解,而粒子群优化模拟鸟群行为更新速度和位置。GA-PSO混合算法结合两者优点,提高搜索效率。在DVRP中,算法需考虑问题特性和约束,以找到高质量解。
|
6月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的CDVRP问题求解matlab仿真
该文介绍了车辆路径问题(Vehicle Routing Problem, VRP)中的组合优化问题CDVRP,旨在找寻满足客户需求的最优车辆路径。在MATLAB2022a中运行测试,结果显示了算法过程。核心程序运用了GA-PSO混合算法,包括粒子更新、交叉、距离计算及变异等步骤。算法原理部分详细阐述了遗传算法(GA)的编码、适应度函数、选择、交叉和变异操作,以及粒子群优化算法(PSO)的粒子表示、速度和位置更新。最后,GA-PSO混合算法结合两者的优点,通过迭代优化求解CDVRP问题。
|
7月前
|
机器学习/深度学习 分布式计算 并行计算
【MATLAB】数据拟合第11期-基于粒子群迭代的拟合算法
【MATLAB】数据拟合第11期-基于粒子群迭代的拟合算法
179 0
【MATLAB第38期】 MATLAB SSA-XGBOOST实现多分类预测,麻雀算法SSA优化XGBOOST模型超参数(多输入单输出数据)
【MATLAB第38期】 MATLAB SSA-XGBOOST实现多分类预测,麻雀算法SSA优化XGBOOST模型超参数(多输入单输出数据)