数据处理

首页 标签 数据处理
# 数据处理 #
关注
17383内容
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
|
7小时前
| |
来自: 云原生
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
|
1天前
|
Swagger动态参数注解:使用@DynamicParameters实现JSON参数的灵活定义
总结起来,通过使用SpringFox提供给我们工具箱里面非常有力量但又不太显眼工具———即使面对复杂多变、非标准化数据格式也能轻松驾驭它们———从而大大增强我们系统与外界沟通交流能力同时也保证系统内部数据处理逻辑清晰明确易于维护升级.
解锁Python列表推导式:优雅与效率的完美融合
解锁Python列表推导式:优雅与效率的完美融合
|
3天前
|
《从踩坑到精通:边缘网关在物联网场景下的实践与优化指南》
本文以智慧园区物联网项目为背景,聚焦非电商/金融场景下边缘网关的开发实践与优化。针对传统中心化网关存在的延迟高、单点故障、吞吐量不足等问题,团队重构架构引入边缘计算,部署分布式网关集群。文章详细阐述从硬件选型(工业级处理器设备)到软件分层设计(驱动适配、数据处理、协同控制层)的全流程,重点解析协议适配难题(私有协议反向工程、串口通信纠错)、数据预处理策略(过滤、聚合、脱敏)、高可用设计(硬件冗余、故障转移、本地缓存)及性能优化(动态线程池、对象池技术)。
|
4天前
| |
NumPy广播:12个技巧替代循环,让数组计算快40倍
摆脱Python数据处理中的低效for循环!掌握NumPy广播机制,实现向量化计算,让代码更简洁、运行更快。从数据标准化到距离矩阵、独热编码,12个实战案例教你用形状思维替代循环思维,显著降低CPU负载,提升程序性能。
116_大规模预训练数据管理与质量控制机制
在2025年的大语言模型(LLM)训练领域,数据管理和质量控制已成为决定模型性能上限的关键因素。随着模型规模的不断扩大(从早期的数十亿参数到如今的数千亿参数),对训练数据的数量、多样性和质量要求也呈指数级增长。一个高效的数据管理系统和严格的质量控制机制,不仅能够确保训练过程的稳定性,还能显著提升最终模型的性能和安全性。
110_微调数据集标注:众包与自动化
在大语言模型(LLM)的微调过程中,高质量的标注数据是模型性能提升的关键因素。随着模型规模的不断扩大和应用场景的日益多样化,如何高效、准确地创建大规模标注数据集成为了研究者和工程师面临的重要挑战。众包与自动化标注技术的结合,为解决这一挑战提供了可行的方案。
免费试用