基于方块编码的图像压缩matlab仿真,带GUI界面

简介: 本项目展示了基于方块编码的图像压缩算法,包括算法运行效果、软件环境(Matlab 2022a)、核心程序及理论概述。算法通过将图像划分为固定大小的方块并进行量化、编码,实现高效压缩,适用于存储和传输大体积图像数据。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg

下图是随着方块大小的变化,图像的压缩率以及对应的图像质量指标PSNR的变化趋势曲线。

4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

subplot(121);
plot(sets,tr,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0])
xlabel('方框大小');
ylabel('压缩率');
subplot(122);
plot(sets,PSNR,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0])

xlabel('方框大小');
ylabel('压缩后图像PSNR');


% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

[tr1,PSNR1]=code2(2);

disp(['压缩率',num2str(tr1)])
disp(['PSNR',num2str(PSNR1)])
% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

[tr1,PSNR1]=code2(4);

disp(['压缩率',num2str(tr1)])
disp(['PSNR',num2str(PSNR1)])
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

global tr
global PSNR
global tr2
global PSNR2
[tr1,PSNR1]=code2(8);

disp(['压缩率',num2str(tr1)])
disp(['PSNR',num2str(PSNR1)])



sets = [2,4,8,16,32,64,128,256];

for ij = 1:length(sets)
    [tr2(ij),PSNR2(ij)] = code(sets(ij));
end

figure;
subplot(121);
plot(sets,tr2,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0])

xlabel('方框大小');
ylabel('压缩率');

subplot(122);
plot(sets,PSNR2,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0])

xlabel('方框大小');
ylabel('压缩后图像PSNR');
009_030m

4.算法理论概述
随着信息技术的飞速发展,图像数据在各个领域中的应用越来越广泛。然而,图像数据通常具有较大的数据量,这给存储、传输和处理带来了很大的挑战。为了解决这个问题,图像压缩技术应运而生。图像压缩的目的是在不损失图像质量的前提下,尽可能地减少图像数据的存储空间和传输带宽。方块编码是一种基于区域划分的图像压缩方法,它将图像划分为若干个大小相同的方块,然后对每个方块进行编码。方块编码具有简单、高效、易于实现等优点,在图像压缩领域得到了广泛的应用。

(一)方块的划分
方块编码将图像划分为若干个大小相同的方块,每个方块通常由若干个像素组成。方块的大小可以根据图像的特点和压缩要求进行选择,一般为 4x4、8x8 或 16x16 等。
(二)灰度值的量化
在方块编码中,每个像素的灰度值通常被量化为有限个等级。量化的目的是减少灰度值的取值范围,从而降低编码的复杂度。量化的方法可以采用均匀量化或非均匀量化。
(三)编码单元的定义
方块编码中的编码单元是指一个方块及其对应的量化后的灰度值。编码单元通常用一个整数来表示,这个整数可以通过对编码单元进行编码得到。

4.1 编码单元的表示
image.png

   为了方便编码,我们可以将编码单元表示为一个一维数组。具体方法是将编码单元中的像素按照一定的顺序排列成一个一维数组,然后用这个一维数组来表示编码单元。

4.2编码单元的编码
方块编码的核心是对编码单元进行编码。编码的目的是将编码单元表示为一个尽可能短的二进制代码。编码的方法可以采用哈夫曼编码、算术编码等。

image.png

相关文章
|
5天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
1天前
|
算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计
### 简介 本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。 核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。
99 76
|
6天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
1天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
122 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)