【多式联运】基于帝企鹅AFO 粒子群PSO 遗传GA算法求解不确定多式联运路径优化问题附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
全球加速 GA,每月750个小时 15CU
简介: 【多式联运】基于帝企鹅AFO 粒子群PSO 遗传GA算法求解不确定多式联运路径优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

随着"一带一路"国家战略的推进和建设,中新物流通道在衔接"丝绸之路经济带"和"海上丝绸之路"中的作用日益明显.集装箱多式联运是中新贸易的主要实现形式,目前,多式联运路径优化问题是多式联运相关研究领域的热点.然而多式联运路径优化过程即不同参与者的权衡过程,由于不同商品的特性差异,运输活动中不同参与者对集装箱多式联运的要求也不尽相同.随着"绿色物流"逐渐深入人们的生活,运输过程中的碳排放也受到政府部门越来越多的关注.

⛄ 部分代码

clc;

clear all;

close all;

warning off

%%

noRng=1;

rng('default')

rng(noRng)

%%

global data

data.numN=15; %节点数量

data.Cap_Ts=xlsread("节点处的最大中转运输能力.xlsx");

temp=round(rand(data.numN,3)*10+15)*10;

data.Cap_Ts(:,2:end)=temp;

data.Windows=xlsread("节点的时间窗.xlsx");

data.D=xlsread("节点间距离.xlsx");

data.Cap_Tp=xlsread("节点间最大运输能力.xlsx");

data.T=data.D;

data.v=[76,60,30];

for i=1:length(data.Cap_Tp(:,1))

   no1=data.Cap_Tp(i,1);

   no2=data.Cap_Tp(i,2);

   for j=1:3

       if isnan(data.Cap_Tp(i,2+j))

           data.D(i,2+j)=nan;

       end

   end

   data.T(i,[3,6,9])=round(data.D(i,3:5)./data.v/1.2);

   data.T(i,[4,7,10])=round(data.D(i,3:5)./data.v);

   data.T(i,[5,8,11])=round(data.D(i,3:5)./data.v/0.8);

end

data.Windows(:,3)=data.Windows(:,3).*(1-rand(size(data.Windows(:,3))));

data.Windows(:,4)=data.Windows(:,4).*(1+rand(size(data.Windows(:,3))))+10;

data.Windows(:,3:4)=max(0,round(data.Windows(:,3:4)+randn(size(data.Windows(:,3:4)))));

data.Windows(:,5)=max(data.Windows(:,4));

data.CT=[0,3.09,5.23; % 转换成本

   3.09,0,26.62;

   5.23,26.62,0];

data.TT=[0,1,1;         %转换时间

   1,0,2;

   1,2,0];

data.ET=[0,1.56,6;       % 转换碳排放

       1.56,0,3.12;

       6,3.12,0];

data.q=[120,150,180];


data.E0=[0.796,0.028,0.04];

data.CW=[30,50];

data.S=1;

data.E=15;

data.alpha=0.8;

data.beta1=0.8;

data.beta2=0.8;

data.beta3=0.8;

data.C0=[0.3,0.2,0.1]; %三种运输方式的运输成本

data.weight=[1,1];

data.maxB=100000;

data.maxE=21000;

%%

%%

data.numQ=100;

for i=1:data.numQ

   if rand<0.5

       data.q0(i)=rand*(data.q(2)-data.q(1))+data.q(1);

   else

       data.q0(i)=rand*(data.q(3)-data.q(2))+data.q(2);

   end

end

%%

G=graph(data.D(:,1),data.D(:,2),data.D(:,1)*0+1);

figure

plot(G)

set(gca,'LooseInset',get(gca,'TightInset'))

%%

lb=0;

ub=1;

dim=length(data.D(:,1))*3;

option.lb=lb;

option.ub=ub;

option.dim=dim;

if length(option.lb)==1

   option.lb=ones(1,option.dim)*option.lb;

   option.ub=ones(1,option.dim)*option.ub;

end

option.fobj=@aimFcn_1;

option.showIter=0;


%% 算法参数设置 Parameters

% 基本参数

option.numAgent=20;        %种群个体数 size of population

option.maxIteration=100;    %最大迭代次数 maximum number of interation

%% 遗传算法

option.p1_GA=0.7;

option.p2_GA=0.1;

%% 粒子群

option.w_pso=0.1;

option.c1_pso=1.2;

option.c2_pso=1.2;

%% AFO


option.v_lb=-(option.ub-option.lb)/4;

option.v_ub=(option.ub-option.lb)/4;

option.w2=0.5; %weight of Moving strategy III

option.w4=1;%weight of Moving strategy III

option.w5=1;%weight of Moving strategy III

option.pe=0.01; % rate to judge Premature convergence

option.gap0=ceil(sqrt(option.maxIteration*2))+1;

option.gapMin=5; % min gap

option.dec=2;    % dec of gap

option.L=10;     % Catastrophe

%% DE

option.F=0.5;

option.CR=0.5;

%%

str_legend=[{'GA'},{'PSO'},{'AFO'}];

aimFcn=[{@GA},{@PSO},{@AFO3}];

%% 初始化

rng(noRng)

x=ones(option.numAgent,option.dim);

y=ones(option.numAgent,1);

for i=1:option.numAgent

   x(i,:)=rand(size(option.lb)).*(option.ub-option.lb)+option.lb;

   y(i)=option.fobj(x(i,:),option,data);

end

%% 使用算法求解

bestX=x;

for i=1:length(aimFcn)

   rng(noRng)

   tic

   [bestY(i,:),bestX(i,:),recording(i)]=aimFcn{i}(x,y,option,data);

   tt(i)=toc;

end

%% 绘制迭代曲线

figure

hold on

for i=1:length(aimFcn)

   

   if i>1

       plot((recording(i).bestFit),'LineWidth',2)

   else

       plot((recording(i).bestFit),'--','LineWidth',2)

   end

end

legend(str_legend)

xlabel('评价次数(*100)')

ylabel('适应度函数值')

set(gca,'LooseInset',get(gca,'TightInset'))

%% 计算结果

for i=1:length(str_legend)

   str=[str_legend{i},'优化后方案'];

   [~,result(i)]=option.fobj(bestX(i,:),option,data);


  % drawPC(result(i),data,str)

end

%%

rng(11)

x0=[0.227391667368465 0.879816756512174 0.758978072405287 0.510838515791228 0.192188536212261 0.651441269146713 0.418963422194475 0.552435663022093 0.692178644766480 0.525121273337296 0.901443303774014 0.870433999021102 0.727907836575027 0.635555150728710 0.377948489141470 0.0665747380900594 0.380375322185706 0.271295139005737 0.556390072117235 0.836324594294146 0.412650509862244 0.435408044462144 0.339160221282954 0.517673083186858 0.305139543163461 0.759153928221489 0.661651047625365 0.695663261206050 0.579862243307374 0.0203768757943083 0.567587976562174 0.417560315118765 0.194865572678659 0.0355023446924871 0.0656090882042756 0.283822647397696 0.409304642722500 0.797371466667136 0.139734109717042 0.943567670211017 0.736340144724420 0.899302180486718 0.0958418793238567 0.494947220485218 0.377043083335839 0.392090901825893 0.872224588221799 0.225018973369553 0.658496649609525 0.985772242893824 0.312242936944674 0.0176752228038184 0.151305501546866 0.117920480497746 0.137344184189911 0.929080746036836 0.737056036783124 0.264583371593473 0.935709972806256 0.930542122124921 0.458371373498295 0.0216966409045397 0.0615124906604629 0.569072523079761 0.912715979600965 0.684016483416011 0.0872976004423956 0.854123989826840 0.699891878132857 0.603233918882651 0.626266466189881 0.764357628595205 0.633979476955922 0.162893341780099 0.277411062836412 0.839224723775726 0.908550538167801 0.890586782754062 0.466391769502905 0.488448750263230 0.365236675941588 0.730292329677324 0.748971571306197 0.706903738180738];

gs = GlobalSearch;

problem = createOptimProblem('fmincon','x0',x0,...

   'objective',@(x)aimFcn_1(x,option,data),'lb',x0*0,'ub',x0*0+1);

x = run(gs,problem);

[fit1,result(i+1)]=aimFcn_1(x,option,data);

%%

P=[

   0.610000000000000 1 1 1 1 0.610000000000000

0.610000000000000 1 1 0.810000000000000 0 0

0.830000000000000 0.920000000000000 1 1 0.900000000000000 0.830000000000000

1 1 1 0.930000000000000 1 0.930000000000000]; %注 P是从result里面复制出来的

str_legend=[str_legend,{'GS'}];

figure

bar(0:5,P,'grouped')

legend(str_legend)

xlabel('约束')

ylabel('满足概率')

set(gca,'LooseInset',get(gca,'TightInset'))

⛄ 运行结果

⛄ 参考文献

[1]何文护. 基于混合遗传算法的多式联运优化的选择研究[D]. 大连海事大学, 2011.

[2]李干亮. 基于多维视角的中新集装箱多式联运路径优化研究[D]. 重庆交通大学, 2019.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
16小时前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
9月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章