数字频带传输——多进制数字调制及MATLAB仿真

简介: 数字频带传输——多进制数字调制及MATLAB仿真

前言

数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信中的一样,可以通过对基带信号的频谱搬移来适应信道特性,也到同样的目的可以采用频率调制、相位调制的方式来达到同样的目的。

本文将主要通过 Matlab 来学习多进制的调制解调方式,包括 QPSK、OQPSK,并分析和仿真这些调制系统在 AWGN 信道下的性能。


一、MASK(一维信号)

1、MASK 简介

MASK 信号将 M 进制数字符号一一映射为 M 个幅度值不同的波形,可以写成如下形式:


image.png

image.png

2、MASK 矢量表示


image.png

image.png

因此,MASK信号可以用一维信号空间中的点(星座)表示,如下图示意了 8ASK 的星座图。

PAM 信号星座

二、MPSK(二维信号)

1、MPSK 简介

MPSK 信号将 M进制符号与 M 个载波相位一一对应,可以写成如下形式:

image.png

2、MPSK 矢量表示


image.png

因此,MPSK 可以用二维空间中的星座点表示,下图示意了 QPSK 调制的星座图

QPSK 信号星座(M=4)

三、MQAM(二维信号)

1、MQAM 简介


image.png

image.png

2、MQAM 信号的矢量表示


image.png

16QAM 信号星座

四、正交 MFSK(M维信号)

image.png

五、MATLAB 仿真

场景:设信道加性高斯白噪声的双边功率谱密度为 N 0 / 2 N_0/2N0/2,发送信号平均每符号能量 E s E_sEs,利用 MATLAB ,通过仿真的方法仿真 QPSK 系统在 AWGN 信道下的性能

思路:利用 MATLAB ,可以通过蒙特卡罗仿真的方式得到 MPSK 系统的误码率,如下图所示

MPSK 等效基带系统在无码间干扰 AWGN 信道下性能仿真框图

1、MATLAB 源码

%MPSK系统系统的仿真
clear all;
close all;
M=4;     %QPSK
EsN0dB = 3:0.5:10;
EsN0 = 10.^( EsN0dB/10 );
Es = 1;
N0 = 10.^( -EsN0dB/10 );
sigma = sqrt(N0/2);
error = zeros(1,length(EsN0dB));
s_data = zeros(1,length(EsN0dB));
for k=1:length(EsN0dB)
    error(k)=0;
    s_data(k) = 0;
    while error(k)<1000
        %产生信源 1,2,3,4均匀分布
        d = ceil( rand(1,10000)*M );
        %调制成QPSK信号(复基带形式)
        s = sqrt(Es)*exp(j*2*pi/M*(d-1));
        %加入信道噪声(复噪声)
        r = s + sigma(k)*( randn(1,length(d)) + j*randn(1,length(d)) );
        %判决
        for m=1:M    %计算距离
            rd(m,:) = abs( r - sqrt(Es)*exp(j*2*pi/M*(m-1)) );
        end
        for m=1:length(s)   %判决距离最近的点
            dd(m) = find( rd(:,m) == min(rd(:,m)) );
            if dd(m)~=d(m)
                error(k) = error(k)+1;
            end
        end
        s_data(k) = s_data(k)+10000;
    end
%    drawnow
%    semilogy(EsN0dB, error./(s_data+eps)); hold on;
end
Pe = error./s_data;
%理论计算的误码率结果
Ps = erfc( sqrt(EsN0)*sin(pi/M) );
semilogy(EsN0dB,Pe,'b*-'); hold on;
semilogy(EsN0dB,Ps,'rd-');
xlabel('Es/N0(dB)'); ylabel('误码率');
legend('仿真结果','理论计算结果');

2、仿真及结果

从上图可以看到,仿真结果与理论计算结果的误码率曲线基本重合。

目录
相关文章
|
10天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
10天前
|
算法 云计算 数据安全/隐私保护
云计算SLA响应时间的matlab模拟与仿真
本项目基于MATLAB 2022a,模拟了排队理论中的FIFO(先入先出)队列模型。程序通过Poisson随机变量生成数据包流量,使用公式`q(t)=max(0,q(t-1)+a(t)-1)`计算缓冲区中数据包数量随时间的变化,并输出`q(t)`柱状图及时间差分析结果。核心算法结合M/M/1排队模型与Little&#39;s Law,评估响应时间受网络延迟、处理时间和队列等待等因素的影响,为云计算SLA性能优化提供理论支持。
|
10天前
|
存储 供应链 数据安全/隐私保护
基于GA遗传优化的风光储微电网削峰填谷能量管理系统matlab仿真
本课题基于MATLAB2022a开发,利用遗传算法(GA)优化风光储微电网的削峰填谷能量管理。系统通过优化风力发电、光伏发电及储能系统的充放电策略,实现电力供需平衡,降低运行成本,提高稳定性与经济效益。仿真结果无水印展示,核心程序涵盖染色体编码、适应度计算、选择、交叉、变异等遗传操作,最终输出优化后的功率分配方案。削峰填谷技术可减少电网压力,提升可再生能源利用率,延长储能设备寿命,为微电网经济高效运行提供支持。
|
10天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
10天前
MATLAB进行接触力仿真
MATLAB进行接触力仿真
27 0
|
10天前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
43 0
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真
本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。 理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。
|
10月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
416 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
10月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
238 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
10月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
396 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码