数字频带传输——多进制数字调制及MATLAB仿真

简介: 数字频带传输——多进制数字调制及MATLAB仿真

前言

数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信中的一样,可以通过对基带信号的频谱搬移来适应信道特性,也到同样的目的可以采用频率调制、相位调制的方式来达到同样的目的。

本文将主要通过 Matlab 来学习多进制的调制解调方式,包括 QPSK、OQPSK,并分析和仿真这些调制系统在 AWGN 信道下的性能。


一、MASK(一维信号)

1、MASK 简介

MASK 信号将 M 进制数字符号一一映射为 M 个幅度值不同的波形,可以写成如下形式:


image.png

image.png

2、MASK 矢量表示


image.png

image.png

因此,MASK信号可以用一维信号空间中的点(星座)表示,如下图示意了 8ASK 的星座图。

PAM 信号星座

二、MPSK(二维信号)

1、MPSK 简介

MPSK 信号将 M进制符号与 M 个载波相位一一对应,可以写成如下形式:

image.png

2、MPSK 矢量表示


image.png

因此,MPSK 可以用二维空间中的星座点表示,下图示意了 QPSK 调制的星座图

QPSK 信号星座(M=4)

三、MQAM(二维信号)

1、MQAM 简介


image.png

image.png

2、MQAM 信号的矢量表示


image.png

16QAM 信号星座

四、正交 MFSK(M维信号)

image.png

五、MATLAB 仿真

场景:设信道加性高斯白噪声的双边功率谱密度为 N 0 / 2 N_0/2N0/2,发送信号平均每符号能量 E s E_sEs,利用 MATLAB ,通过仿真的方法仿真 QPSK 系统在 AWGN 信道下的性能

思路:利用 MATLAB ,可以通过蒙特卡罗仿真的方式得到 MPSK 系统的误码率,如下图所示

MPSK 等效基带系统在无码间干扰 AWGN 信道下性能仿真框图

1、MATLAB 源码

%MPSK系统系统的仿真
clear all;
close all;
M=4;     %QPSK
EsN0dB = 3:0.5:10;
EsN0 = 10.^( EsN0dB/10 );
Es = 1;
N0 = 10.^( -EsN0dB/10 );
sigma = sqrt(N0/2);
error = zeros(1,length(EsN0dB));
s_data = zeros(1,length(EsN0dB));
for k=1:length(EsN0dB)
    error(k)=0;
    s_data(k) = 0;
    while error(k)<1000
        %产生信源 1,2,3,4均匀分布
        d = ceil( rand(1,10000)*M );
        %调制成QPSK信号(复基带形式)
        s = sqrt(Es)*exp(j*2*pi/M*(d-1));
        %加入信道噪声(复噪声)
        r = s + sigma(k)*( randn(1,length(d)) + j*randn(1,length(d)) );
        %判决
        for m=1:M    %计算距离
            rd(m,:) = abs( r - sqrt(Es)*exp(j*2*pi/M*(m-1)) );
        end
        for m=1:length(s)   %判决距离最近的点
            dd(m) = find( rd(:,m) == min(rd(:,m)) );
            if dd(m)~=d(m)
                error(k) = error(k)+1;
            end
        end
        s_data(k) = s_data(k)+10000;
    end
%    drawnow
%    semilogy(EsN0dB, error./(s_data+eps)); hold on;
end
Pe = error./s_data;
%理论计算的误码率结果
Ps = erfc( sqrt(EsN0)*sin(pi/M) );
semilogy(EsN0dB,Pe,'b*-'); hold on;
semilogy(EsN0dB,Ps,'rd-');
xlabel('Es/N0(dB)'); ylabel('误码率');
legend('仿真结果','理论计算结果');

2、仿真及结果

从上图可以看到,仿真结果与理论计算结果的误码率曲线基本重合。

目录
相关文章
|
7天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
8天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
8天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
33 3
|
6天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
211 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章