Python基础算法解析:K最近邻算法

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Python基础算法解析:K最近邻算法

K最近邻(K-Nearest Neighbors,简称KNN)是一种简单而有效的监督学习算法,常用于分类和回归问题。本文将介绍KNN算法的原理、实现步骤以及如何使用Python进行KNN的编程实践。

什么是K最近邻算法?

K最近邻算法是一种基于实例的学习方法,其核心思想是:如果一个样本在特征空间中的k个最相似(即最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法不需要训练模型,而是利用训练集中的数据进行预测。

KNN的原理

KNN算法的原理非常简单,主要包括以下几个步骤:

  • 计算距离:计算测试样本与训练样本之间的距离,通常使用欧氏距离或曼哈顿距离。
  • 选择最近邻:选取与测试样本距离最近的k个训练样本。
  • 进行分类(或回归):对于分类问题,通过投票机制确定测试样本的类别;对于回归问题,通过求取k个最近邻样本的平均值确定测试样本的输出。

    KNN的实现步骤

  • 计算距离:对于每个测试样本,计算其与所有训练样本的距离。
  • 选择最近邻:选取与测试样本距离最近的k个训练样本。
  • 进行分类(或回归):对于分类问题,采用多数表决法确定测试样本的类别;对于回归问题,采用平均值确定测试样本的输出。

    Python实现KNN算法

    下面通过Python代码演示如何实现KNN算法:
import numpy as np

class KNN:
    def __init__(self, k=3):
        self.k = k

    def euclidean_distance(self, x1, x2):
        return np.sqrt(np.sum((x1 - x2) ** 2))

    def predict_classification(self, X_test, X_train, y_train):
        y_pred = [self._predict_single_classification(x, X_train, y_train) for x in X_test]
        return np.array(y_pred)

    def _predict_single_classification(self, x, X_train, y_train):
        distances = [self.euclidean_distance(x, x_train) for x_train in X_train]
        k_indices = np.argsort(distances)[:self.k]
        k_nearest_labels = [y_train[i] for i in k_indices]
        most_common = np.argmax(np.bincount(k_nearest_labels))
        return most_common

    def predict_regression(self, X_test, X_train, y_train):
        y_pred = [self._predict_single_regression(x, X_train, y_train) for x in X_test]
        return np.array(y_pred)

    def _predict_single_regression(self, x, X_train, y_train):
        distances = [self.euclidean_distance(x, x_train) for x_train in X_train]
        k_indices = np.argsort(distances)[:self.k]
        k_nearest_labels = [y_train[i] for i in k_indices]
        return np.mean(k_nearest_labels)

在上述代码中,我们定义了一个名为KNN的类,包括了初始化方法、欧氏距离计算方法、分类预测方法和回归预测方法。其中,predict_classification方法用于进行分类预测,predict_regression方法用于进行回归预测。

使用KNN进行分类和回归

接下来,让我们使用KNN算法对一个简单的分类和回归问题进行预测:

from sklearn.datasets import load_iris, load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error

# 分类问题示例
iris = load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

knn_classifier = KNN(k=3)
y_pred_classification = knn_classifier.predict_classification(X_test, X_train, y_train)
accuracy = accuracy_score(y_test, y_pred_classification)
print("Classification Accuracy:", accuracy)

# 回归问题示例
boston = load_boston()
X = boston.data
y = boston.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

knn_regressor = KNN(k=3)
y_pred_regression = knn_regressor.predict_regression(X_test, X_train, y_train)
mse = mean_squared_error(y_test, y_pred_regression)
print("Mean Squared Error:", mse)

总结

K最近邻算法是一种简单而强大的监督学习算法,适用于分类和回归问题。通过本文的介绍,你已经了解了KNN算法的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用KNN算法。

目录
相关文章
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
4天前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
3月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
133 2
|
4月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
100 1
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多