基于蜣螂优化算法DBO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

简介: 基于蜣螂优化算法DBO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

1主要内容

该程序采用蜣螂优化算法+变分模态分解+核极限学习机三种方法组合对短期光伏功率进行预测,当然,该方法同样适用于风电、负荷等方面的预测,通过采用原始数据进行训练和测试,验证了方法的有效性,同时,该程序包内还包括变分模态分解+核极限学习机(vmd+kelm)以及核极限学习机(kelm)预测对比程序,方便对比学习,程序包括必要注释,通用性强!

  • 蜣螂优化算法DBO
蜣螂优化算法是东华大学教授于2022年提出来的,作为比较新的群智能优化算法,它具有其他智能算法同样的特征,包括种群设置、迭代优化等,算法参考的是屎壳郎滚球、跳舞、觅食、偷盗和繁殖行为,程序包内包括该新型智能算法的参考文献,方便大家学习!

  • 变分模态分解VMD

核极限学习机KELM

KELM 是在传统 ELM 的基础上延展而来,用核映射代替随机映射,进而将高复杂低维的空间问题转化为高维空间内积运算问题,相较于 ELM 具有更强的网络输出稳定性和泛化能力。

在KELM算法中,核参数g 和正则化系数C 是影响KELM预测性能的重要因素。在 KELM 训练学习过程中,核参数 g 具有调节经验风险比例和置信区间的作用,而正则化系数C 用于控制训练误差所占比例的范围,若核参数和正则化系数选择不当,则会使 KELM 的泛化能力大大减弱,从而导致网络输出不稳定,因此对 KELM的核参数和正则化系数进行优化十分必要。因此,需要采用智能算法进行参数优化。

2 部分代码

clear 
close all
%% 导入数据
data = xlsread('原始数据.xlsx');
%%  
global uoutput shuru geshu nn K shuchu     
geshu=847;%训练集的个数
%读取数据
shuru=data(:,1:4);
shuchu=data(:,5);
%% vmd分解
uoutput=[];
alpha = 200;       % moderate bandwidth constraint
tau = 0;            % noise-tolerance (no strict fidelity enforcement)
K = 4;              % 4 模
DC = 0;             % no DC part imposed
init = 1;           % initialize omegas uniformly
tol = 1e-7;
L=length(shuchu);%采样点数,即有多少个数据
for d=1:size(shuchu,2)
[u_0, u_hat, omega] = VMD(shuchu(:,d), alpha, tau, K, DC, init, tol);
K=size(u_0,1);
figure
subplot(K+1,1,1)
plot(shuchu(:,d))
ylabel('原始')
xlim([0 L])
title(['第',num2str(d),'个特征的VMD分解'])
for i=2:K+1
    subplot(K+1,1,i)
    plot(u_0(i-1,:))
    xlim([0 L])
    ylabel(['IMF',num2str(i-1)])
end
ylabel('res')
uoutput=[uoutput;u_0 ];
end
% nn = randperm(size(shuru,1));%随机排序
nn=1:size(shuru,1);%正常排序
%%  蜣螂算法参数设置
% 优化参数的个数dim为2 。
%目标函数
fun = @getObjValue; 
dim = 2;
% 优化参数的取值上下限(正则化系数C 核函数参数矩阵g )
lb = [25 2];
ub = [60 5];
%%  参数设置
pop =20; %种群数量
Max_iteration=100;%最大迭代次数             
%% 优化(调用函数)
[Best_pos,Best_score,Convergence_curve]=DBO(pop,Max_iteration,lb,ub,dim,fun);



3 程序结果


相关文章
|
1天前
|
算法 数据挖掘
MATLAB数据分析、从算法到实现
MATLAB数据分析、从算法到实现
|
4天前
|
存储 算法 大数据
Python算法高手的必修课:深入理解分治法、贪心算法、动态规划,让你的代码更智能!
【7月更文挑战第9天】在Python算法学习中,分治法(如归并排序)将大问题分解为小部分递归解决;贪心算法(如货币找零)在每步选择局部最优解尝试达到全局最优;动态规划(如斐波那契数列)通过存储子问题解避免重复计算,解决重叠子问题。掌握这三种方法能提升代码效率,解决复杂问题。
|
8天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
8天前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。
|
8天前
|
算法
基于PID-bang-bang控制算法的卫星姿态控制matlab仿真
该文主要介绍了一个基于PID-bang-bang控制算法的卫星姿态控制系统。在MATLAB2022a中进行了仿真,生成了控制收敛曲线和姿态调整动画。系统通过PID控制器减少误差,结合Bang-Bang控制实现快速响应。核心程序涉及卫星位置、推力向量的计算及动画绘制。PID控制器利用比例、积分、微分项调整输出,Bang-Bang控制则在误差超出阈值时提供即时修正。两者结合以平衡控制精度和响应速度,适应卫星姿态的精确调节需求。
|
9天前
|
传感器 算法
基于无线传感器网络的LC-DANSE波束形成算法matlab仿真
摘要: 此MATLAB程序对比了LC-DANSE与LCMV波束形成算法在无线传感器网络中的性能,基于SNR和MSE指标。测试在MATLAB 2022a环境下进行。核心代码涉及权重更新迭代,用于调整传感器节点权重以增强目标信号。LC-DANSE是分布式自适应算法,关注多约束条件下的噪声抑制;LCMV则是经典集中式算法,侧重单个期望信号方向。两者在不同场景下各有优势。程序结果显示SNR和MSE随迭代变化趋势,并保存结果数据。
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
2月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
2月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)