基于蜣螂优化算法DBO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

简介: 基于蜣螂优化算法DBO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

1主要内容

该程序采用蜣螂优化算法+变分模态分解+核极限学习机三种方法组合对短期光伏功率进行预测,当然,该方法同样适用于风电、负荷等方面的预测,通过采用原始数据进行训练和测试,验证了方法的有效性,同时,该程序包内还包括变分模态分解+核极限学习机(vmd+kelm)以及核极限学习机(kelm)预测对比程序,方便对比学习,程序包括必要注释,通用性强!

  • 蜣螂优化算法DBO
蜣螂优化算法是东华大学教授于2022年提出来的,作为比较新的群智能优化算法,它具有其他智能算法同样的特征,包括种群设置、迭代优化等,算法参考的是屎壳郎滚球、跳舞、觅食、偷盗和繁殖行为,程序包内包括该新型智能算法的参考文献,方便大家学习!

  • 变分模态分解VMD

核极限学习机KELM

KELM 是在传统 ELM 的基础上延展而来,用核映射代替随机映射,进而将高复杂低维的空间问题转化为高维空间内积运算问题,相较于 ELM 具有更强的网络输出稳定性和泛化能力。

在KELM算法中,核参数g 和正则化系数C 是影响KELM预测性能的重要因素。在 KELM 训练学习过程中,核参数 g 具有调节经验风险比例和置信区间的作用,而正则化系数C 用于控制训练误差所占比例的范围,若核参数和正则化系数选择不当,则会使 KELM 的泛化能力大大减弱,从而导致网络输出不稳定,因此对 KELM的核参数和正则化系数进行优化十分必要。因此,需要采用智能算法进行参数优化。

2 部分代码

clear 
close all
%% 导入数据
data = xlsread('原始数据.xlsx');
%%  
global uoutput shuru geshu nn K shuchu     
geshu=847;%训练集的个数
%读取数据
shuru=data(:,1:4);
shuchu=data(:,5);
%% vmd分解
uoutput=[];
alpha = 200;       % moderate bandwidth constraint
tau = 0;            % noise-tolerance (no strict fidelity enforcement)
K = 4;              % 4 模
DC = 0;             % no DC part imposed
init = 1;           % initialize omegas uniformly
tol = 1e-7;
L=length(shuchu);%采样点数,即有多少个数据
for d=1:size(shuchu,2)
[u_0, u_hat, omega] = VMD(shuchu(:,d), alpha, tau, K, DC, init, tol);
K=size(u_0,1);
figure
subplot(K+1,1,1)
plot(shuchu(:,d))
ylabel('原始')
xlim([0 L])
title(['第',num2str(d),'个特征的VMD分解'])
for i=2:K+1
    subplot(K+1,1,i)
    plot(u_0(i-1,:))
    xlim([0 L])
    ylabel(['IMF',num2str(i-1)])
end
ylabel('res')
uoutput=[uoutput;u_0 ];
end
% nn = randperm(size(shuru,1));%随机排序
nn=1:size(shuru,1);%正常排序
%%  蜣螂算法参数设置
% 优化参数的个数dim为2 。
%目标函数
fun = @getObjValue; 
dim = 2;
% 优化参数的取值上下限(正则化系数C 核函数参数矩阵g )
lb = [25 2];
ub = [60 5];
%%  参数设置
pop =20; %种群数量
Max_iteration=100;%最大迭代次数             
%% 优化(调用函数)
[Best_pos,Best_score,Convergence_curve]=DBO(pop,Max_iteration,lb,ub,dim,fun);



3 程序结果


相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
26 14
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。