考虑需求响应的微网优化调度模型【粒子群算法】【matlab】

简介: 考虑需求响应的微网优化调度模型【粒子群算法】【matlab】

1 主要内容

该模型构建了考虑需求响应的微电网优化调度模型,并采用粒子群算法(PSO)进行优化求解,模型主体有储能、风电、光伏、微燃机和柴油发电机,以运行成本、环境保护成本、负荷需求响应补偿以及等效负荷波动性为目标,该负荷需求响应方式保证可转移负荷总量不变。程序采用matlab模块化编程,注释清晰,出图较多,有详细的参考文档,方便参考学习!

1.1 模型约束条件

功率平衡约束:

主体出力约束:

蓄电池荷电状态约束:

1.2 粒子群算法优化过程

模型采用PSO算法求解分布式能源储能系统的经济调度问题。粒子群算法最早是由 Eberhart博士和Kennedy博士于1995年提出。他们被动物寻找食物的方式引导,进一步采用动物群体的智慧等效建立的一个简单模型。

此方法在对鸟类群体活动行为的基础上,粒子群算法用单个粒子代表上述动物群体中的单一成员。每个粒子都有两个信息属性。一方面是粒子的当前位置,即 N 维空间中的坐标,另一方面是粒子的速度。粒子的当前位置表示粒子的运动方向,粒子的速度表示粒子的运动速度。在这些粒子群中有多个粒子对空间全局进行搜索,每个粒子搜索到的最优解为个体极值。

2 部分代码

%输出数据以及图
%数据
%成本,运行成本,环保成本
Pgrid=-(Pwind+Ppv+BestPos(:,1)+BestPos(:,2)+BestPos(:,3)-(PL(:,1)+BestPos(:,4)));
[f,f1,f2,f3]=Fitness(Pgrid,Pwind,Ppv,BestPos,PL,Prices);
disp('负荷波动与运行成本总和');
f%
disp('运行成本');
f1%运行成本
disp('环保成本');
f2%环保成本
% disp('优化前后可控负荷变化')
% dQ=PL(:,2)-BestPos(:,4);
% dQ
disp('需求响应成本');
f3%需求响应成本(或者称之为可调度负荷调度成本)
%最优解
disp('蓄电池充放电功率');
BestPos(:,1)%蓄电池充放电功率
disp('微型蒸汽轮机发电功率');
BestPos(:,2)%微型蒸汽轮机发电功率
disp('柴油发电机');
BestPos(:,3)%柴油发电功率
disp('可转移负荷功率');
BestPos(:,4)%可转移负荷
disp('大电网交互功率');
Pgrid%可转移负荷
%图
%负荷优化前后曲线(不一定平滑,因为价格除非各种价格设定的合理)
PLorgin=PL(:,1)+PL(:,2);
PLopt=PL(:,1)+BestPos(:,4);
figure
plot(PLorgin,'k--','LineWidth',1.5);
hold on 
plot(PLopt,'m->','LineWidth',1.5);
legend('优化前负荷','优化后负荷');
xlabel('时刻(h)');                                                                                                                                                                                                                                                                                         
ylabel('功率(KW)');
% %优化前后可转移负荷
% figure
% plot(PL(:,2));
% hold on 
% plot(BestPos(:,4));
% legend('优化前负荷','优化后负荷');
% xlabel('时刻(h)');                                                                                                                                                                                                                                                                                         
% ylabel('功率(KW)');


3 效果图

在优化前的总负荷中,可以明显的看出在12:00-16.00和20:00-22:00时间断内,明显出现了负荷的峰值特性,在夜间的0:00-5:00时间内出现了负荷的谷值特性。在进行可控负荷的优化后,新的负荷曲线具有明显的削峰填谷效果。2.将可调度的负荷(可平移负荷)优化以后,处于原始负荷中的可平移负荷部分相应被转移到了负荷谷时刻,原始的可调度负荷大多集中于工作日的白天时间,经过调度优化后,在保持可平移负荷总量不变的基础上,白天时段的可平移负荷大部分被转移到了0:00-8:00时段。其主要原因是设定了需求响应激励的负荷调度策略,负荷用户会在发电侧的价格激励影响下选择在补偿价格高时将自己的部分可调度负荷转移到负荷低谷时期。

4 下载链接

相关文章
|
1天前
|
机器学习/深度学习 数据采集 监控
算法金 | 选择最佳机器学习模型的 10 步指南
许多刚入门的学习者也面临着相似的挑战,特别是在项目启动初期的方向确定和结构规划上。本文意在提供一份全面指南,助你以正确的方法开展项目。 遵循本文提供的每一步至关重要(虽有少数例外)。就像不做饭或点餐就无法享用美食一样,不亲自动手构建模型,就无法实现模型部署。
23 7
算法金 | 选择最佳机器学习模型的 10 步指南
|
2天前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。
|
2天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
3天前
|
机器学习/深度学习 存储 人工智能
算法金 | 一个强大的算法模型,GP !!
高斯过程是一种非参数机器学习方法,利用高斯分布描述数据,并通过核函数衡量相似性。它在小样本和不确定性估计上有优势,常用于回归、分类和优化。高斯过程基于函数分布,通过核函数(如线性、RBF、多项式)捕捉数据关系。与传统方法相比,它在处理不确定性和非线性问题时更具灵活性。虽然计算复杂度高、内存需求大,但通过稀疏高斯过程等方法可改善。高斯过程还可扩展到非平稳和多任务场景。本文通过代码示例展示了高斯过程在战斗胜率预测中的应用。
29 11
算法金 | 一个强大的算法模型,GP !!
|
3天前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
6 0
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
让非算法同学也能了解 ChatGPT 等相关大模型
让非算法同学也能了解 ChatGPT 等相关大模型
|
4天前
|
算法 安全
基于龙格库塔算法的SIR病毒扩散预测matlab仿真
该程序使用龙格库塔算法实现SIR模型预测病毒扩散,输出易感、感染和康复人群曲线。在MATLAB2022a中运行显示预测结果。核心代码设置时间区间、参数,并定义微分方程组,通过Runge-Kutta方法求解。SIR模型描述三类人群动态变化,常微分方程组刻画相互转化。模型用于预测疫情趋势,支持公共卫生决策,但也存在局限性,如忽略空间结构和人口异质性。
|
4天前
|
机器学习/深度学习 监控 算法
基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决
YOLOv2算法应用于昆虫检测,提供实时高效的方法识别和定位图像中的昆虫,提升检测精度。核心是统一检测网络,预测边界框和类别概率。通过预测框尺寸估算昆虫大小,适用于农业监控、生态研究等领域。在matlab2022A上运行,经过关键升级,如采用更优网络结构和损失函数,保证速度与精度。持续优化可增强对不同昆虫的检测能力。![image.png](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_e760ff6682a3420cb4e24d1e48b10a2e.png)
|
5天前
|
算法 调度 决策智能
基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图
这是一个使用MATLAB2022a实现的自适应遗传算法解决车间调度问题的程序,能调整工件数和机器数,输出甘特图和适应度收敛曲线。程序通过编码初始化、适应度函数、遗传操作(选择、交叉、变异)及自适应机制进行优化,目标如最小化完工时间。算法在迭代过程中动态调整参数,以提升搜索效率和全局优化。
|
6天前
|
算法
基于ADM自适应增量调制算法的matlab性能仿真
该文主要探讨基于MATLAB的ADM自适应增量调制算法仿真,对比ADM与DM算法。通过图表展示调制与解调效果,核心程序包括输入输出比较及SNR分析。ADM算法根据信号斜率动态调整量化步长,以适应信号变化。在MATLAB中实现ADM涉及定义输入信号、初始化参数、执行算法逻辑及性能评估。

热门文章

最新文章