考虑需求响应的微网优化调度模型【粒子群算法】【matlab】

简介: 考虑需求响应的微网优化调度模型【粒子群算法】【matlab】

1 主要内容

该模型构建了考虑需求响应的微电网优化调度模型,并采用粒子群算法(PSO)进行优化求解,模型主体有储能、风电、光伏、微燃机和柴油发电机,以运行成本、环境保护成本、负荷需求响应补偿以及等效负荷波动性为目标,该负荷需求响应方式保证可转移负荷总量不变。程序采用matlab模块化编程,注释清晰,出图较多,有详细的参考文档,方便参考学习!

1.1 模型约束条件

功率平衡约束:

主体出力约束:

蓄电池荷电状态约束:

1.2 粒子群算法优化过程

模型采用PSO算法求解分布式能源储能系统的经济调度问题。粒子群算法最早是由 Eberhart博士和Kennedy博士于1995年提出。他们被动物寻找食物的方式引导,进一步采用动物群体的智慧等效建立的一个简单模型。

此方法在对鸟类群体活动行为的基础上,粒子群算法用单个粒子代表上述动物群体中的单一成员。每个粒子都有两个信息属性。一方面是粒子的当前位置,即 N 维空间中的坐标,另一方面是粒子的速度。粒子的当前位置表示粒子的运动方向,粒子的速度表示粒子的运动速度。在这些粒子群中有多个粒子对空间全局进行搜索,每个粒子搜索到的最优解为个体极值。

2 部分代码

%输出数据以及图
%数据
%成本,运行成本,环保成本
Pgrid=-(Pwind+Ppv+BestPos(:,1)+BestPos(:,2)+BestPos(:,3)-(PL(:,1)+BestPos(:,4)));
[f,f1,f2,f3]=Fitness(Pgrid,Pwind,Ppv,BestPos,PL,Prices);
disp('负荷波动与运行成本总和');
f%
disp('运行成本');
f1%运行成本
disp('环保成本');
f2%环保成本
% disp('优化前后可控负荷变化')
% dQ=PL(:,2)-BestPos(:,4);
% dQ
disp('需求响应成本');
f3%需求响应成本(或者称之为可调度负荷调度成本)
%最优解
disp('蓄电池充放电功率');
BestPos(:,1)%蓄电池充放电功率
disp('微型蒸汽轮机发电功率');
BestPos(:,2)%微型蒸汽轮机发电功率
disp('柴油发电机');
BestPos(:,3)%柴油发电功率
disp('可转移负荷功率');
BestPos(:,4)%可转移负荷
disp('大电网交互功率');
Pgrid%可转移负荷
%图
%负荷优化前后曲线(不一定平滑,因为价格除非各种价格设定的合理)
PLorgin=PL(:,1)+PL(:,2);
PLopt=PL(:,1)+BestPos(:,4);
figure
plot(PLorgin,'k--','LineWidth',1.5);
hold on 
plot(PLopt,'m->','LineWidth',1.5);
legend('优化前负荷','优化后负荷');
xlabel('时刻(h)');                                                                                                                                                                                                                                                                                         
ylabel('功率(KW)');
% %优化前后可转移负荷
% figure
% plot(PL(:,2));
% hold on 
% plot(BestPos(:,4));
% legend('优化前负荷','优化后负荷');
% xlabel('时刻(h)');                                                                                                                                                                                                                                                                                         
% ylabel('功率(KW)');


3 效果图

在优化前的总负荷中,可以明显的看出在12:00-16.00和20:00-22:00时间断内,明显出现了负荷的峰值特性,在夜间的0:00-5:00时间内出现了负荷的谷值特性。在进行可控负荷的优化后,新的负荷曲线具有明显的削峰填谷效果。2.将可调度的负荷(可平移负荷)优化以后,处于原始负荷中的可平移负荷部分相应被转移到了负荷谷时刻,原始的可调度负荷大多集中于工作日的白天时间,经过调度优化后,在保持可平移负荷总量不变的基础上,白天时段的可平移负荷大部分被转移到了0:00-8:00时段。其主要原因是设定了需求响应激励的负荷调度策略,负荷用户会在发电侧的价格激励影响下选择在补偿价格高时将自己的部分可调度负荷转移到负荷低谷时期。

4 下载链接

相关文章
|
6天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
14天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
15天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
16天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
15天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
15天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
20天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码