Matlab建立SVM,KNN和朴素贝叶斯模型分类绘制ROC曲线

简介: Matlab建立SVM,KNN和朴素贝叶斯模型分类绘制ROC曲线

绘制ROC曲线通过Logistic回归进行分类

加载样本数据。


load fisheriris

通过使用与versicolor和virginica物种相对应的度量来定义二元分类问题。


pred = meas(51:end,1:2);

定义二进制响应变量。


resp = (1:100)'>50;  % Versicolor = 0, virginica = 1

拟合逻辑回归模型。


mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');

计算ROC曲线。使用逻辑回归模型中的概率估计值作为得分。

perfcurve 将阈值存储在数组中。

显示曲线下的面积。



AUC
AUC = 0.7918

曲线下的面积为0.7918。最大AUC为1,对应于理想分类器。较大的AUC值表示更好的分类器性能。

绘制ROC曲线


plot(X,Y)
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC for Classification by Logistic Regression')

 

使用ROC曲线比较分类方法

 

加载样本数据


load ionosphere
X 是351x34预测变量的矩阵。 Y 是类别标签的字符数组:  'b' 不良雷达回波和  'g' 良好雷达回波。

重新格式化因变量以适合逻辑回归。

重新格式化因变量以适合逻辑回归。

拟合一个逻辑回归模型来估计雷达返回的后验概率是一个不好的概率。



mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');
score_log = mdl.Fitted.Probability; % Probability estimates

使用得分的概率计算标准ROC曲线。

在相同的样本数据上训练SVM分类器标准化数据。


mdlSVM = fitcsvm(pred,resp,'Standardize',true);

计算后验概率。

第二列  score_svm 包含不良雷达收益的后验概率。

使用SVM模型的分数计算标准ROC曲线。

在同一样本数据上拟合朴素贝叶斯分类器。

计算后验概率(分数)


[~,score_nb] = resubPredict(mdlNB);

使用朴素贝叶斯分类的分数计算标准ROC曲线。

将ROC曲线绘制在同一张图上。

 

尽管对于较高的阈值,SVM可以产生更好的ROC值,但逻辑回归通常更擅长区分不良雷达收益与良好雷达。朴素贝叶斯的ROC曲线通常低于其他两个ROC曲线,这表明样本内性能比其他两个分类器方法差。

比较所有三个分类器的曲线下面积。



AUClog
AUClog = 0.9659
AUCsvm
AUCsvm = 0.9489
AUCnb
AUCnb = 0.9393

Logistic回归的AUC度量最高,而朴素的贝叶斯则最低。该结果表明,逻辑回归对此样本数据具有更好的样本内平均性能。

 

确定自定义内核功能的参数值

 

本示例说明如何使用ROC曲线为分类器中的自定义内核函数确定更好的参数值。

在单位圆内生成随机的一组点。

定义预测变量。将第一象限和第三象限中的点标记为属于正类别,而将第二象限和第二象限中的点标记为负类。



pred = [X1; X2];
resp = ones(4*n,1);
resp(2*n + 1:end) = -1; % Labels

创建函数mysigmoid.m ,该函数 接受要素空间中的两个矩阵作为输入,并使用S形内核将其转换为Gram矩阵。

使用Sigmoid内核函数训练SVM分类器。使用标准化数据。

设置  gamma = 0.5 ,使用调整后的S形核训练SVM分类器。






SVMModel2 = fitPosterior(SVMModel2);
[~,scores2] = resubPredict(SVMModel2);

计算两个模型的ROC曲线和曲线下面积(AUC)。

绘制ROC曲线。



plot(x1,y1)
hold on
plot(x2,y2)
hold off


title('ROC for classification by SVM');

 

将gamma参数设置为0.5的内核函数可提供更好的样本内结果。

比较AUC度量。



auc1
auc2
auc1 =


0.9518




auc2 =


0.9985

伽玛设置为0.5时曲线下的面积大于伽玛设置为1时曲线下的面积。这也证实了伽玛参数值为0.5会产生更好的结果。为了直观比较这两个伽玛参数值的分类性能。

 

绘制分类树的ROC曲线

 

加载样本数据。


load fisheriris

列向量  species由三种不同物种的鸢尾花组成。双矩阵  meas 包含对花朵的四种测量类型:萼片长度,萼片宽度,花瓣长度和花瓣宽度。所有度量单位均为厘米。

使用萼片的长度和宽度作为预测变量训练分类树。

根据树预测物种的分类标签和分数 。

根据树预测物种的分类标签和分数 。

[~,score] = resubPredict(Model);

分数是观察值(数据矩阵中的一行)所属类别的后验概率。列  score 对应于所指定的类  'ClassNames'

由于这是一个多类问题,因此不能仅将其  score(:,2) 作为输入。这样做将无法提供  perfcurve 有关两个阴性类别(setosa和virginica)分数的足够信息。此问题与二元分类问题不同,在二元分类问题中,知道一个类别的分数就足以确定另一个类别的分数。因此,必须提供  perfcurve 将两个否定类的得分纳入考虑范围的函数。一种函数是score(:,2)-max(score(:,1),score(:,3))。

X,默认为假阳性率,  Y,默认为真阳性率(召回率或敏感性)。正类标签为  versicolor。由于未定义否定类别,因此  perfcurve 假设不属于肯定类别的观测值属于一个类别。该函数将其接受为否定类。




suby = 12×2


0         0
0.1800    0.1800
0.4800    0.4800
0.5800    0.5800
0.6200    0.6200
0.8000    0.8000
0.8800    0.8800
0.9200    0.9200
0.9600    0.9600
0.9800    0.9800




subnames = 1x2 cell
{'setosa'}    {'virginica'}

在ROC曲线上绘制ROC曲线和最佳工作点。

 

找到与最佳工作点相对应的阈值。



T((X==OPTROCPT(1))&(Y==OPTROCPT(2)))
ans = 0.2857

指定  virginica 为否定类,并计算和绘制ROC曲线  versicolor

同样,必须提供  perfcurve 将否定类分数纳入考量的函数。要使用的函数的一个示例是score(:,2)-score(:,3)。

 

计算ROC曲线的逐点置信区间

加载样本数据。


load fisheriris

仅将前两个变量用作预测变量,来定义二元问题。


pred = meas(51:end,1:2);

定义二进制因变量。


resp = (1:100)'>50;  % Versicolor = 0, virginica = 1

拟合逻辑回归模型。

通过垂直平均(VA)和使用bootstrap进行采样,计算真实正率(TPR)上的逐点置信区间。

'NBoot',1000 将引导样本的数量设置为1000。  'XVals','All' 提示  perfcurve 返回  X,  Y和  T 所有分数的Y 值,并X 使用垂直平均将所有值的值(真阳性率)  平均  (假阳性率)。 默认情况下将使用阈值平均来计算置信范围。

绘制逐点置信区间。


errorbar(X,Y(:,1),Y(:,1)-Y(:,2),Y(:,3)-Y(:,1));

 

不一定总是可以控制误报率(FPR,X 此示例中的  值)。因此,可能希望通过阈值平均来计算真实正利率(TPR)的逐点置信区间。

绘制置信区间。

figure()errorbar(X1(:,1),Y1(:,1),Y1(:,1)-Y1(:,2),Y1(:,3)-Y1(:,1));

 

指定阈值计算ROC曲线。然后绘制曲线。





figure()
errorbar(X1(:,1),Y1(:,1),Y1(:,1)-Y1(:,2),Y1(:,3)-Y1(:,1));

相关文章
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
23天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
30天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
17天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)