Matlab正态分布、历史模拟法、加权移动平均线 EWMA估计风险价值VaR和回测标准普尔指数 S&P500时间序列

简介: Matlab正态分布、历史模拟法、加权移动平均线 EWMA估计风险价值VaR和回测标准普尔指数 S&P500时间序列

此示例说明如何使用三种方法估计风险价值 (VaR) 并执行 VaR 回测分析。这三种方法是:

  • 正态分布
  • 历史模拟
  • 指数加权移动平均线 (EWMA)


风险价值是一种量化与投资组合相关的风险水平的统计方法。VaR 衡量指定时间范围内和给定置信水平的最大损失量。

回测衡量 VaR 计算的准确性。使用 VaR 方法,计算损失预测,然后与第二天结束时的实际损失进行比较。预测损失和实际损失之间的差异程度表明 VaR 模型是低估还是高估了风险。因此,回测回顾数据并有助于评估 VaR 模型。

本示例中使用的三种估计方法在 95% 和 99% 的置信水平下估计 VaR。

加载数据并定义测试窗口

加载数据。本例中使用的数据来自标准普尔指数从 1993 年到 2003 年的时间序列收益率。

tik2rt(sp);

将估计窗口定义为 250 个交易日。测试窗口从 1996 年的第一天开始,一直持续到样本结束。

WinSze = 250;

对于 95% 和 99% 的 VaR 置信水平。

p = \[0.05 0.01\];

这些值意味着分别有至多 5% 和 1% 的概率发生的损失将大于最大阈值(即大于 VaR)。

使用正态分布方法计算 VaR

对于正态分布法,假设投资组合的损益呈正态分布。使用此假设,通过将每个置信水平的_z_分数乘以收益率的标准差来计算 VaR  。由于 VaR 回溯测试对数据进行追溯,因此“今天”的 VaR 是根据过去_N_  = 250 天(但不包括“今天”)的收益率值计算得出的 。

for t = TtWnow
    i = t - TsWidoSrt + 1;
    Esationdw = t-EtiWinwSze:t-1;
    gma = std(Returns(tmWinow));
    Noa95(i) = -Zscre(1)*Sima;
    Nrml99(i) = -Zsore(2)*Sigma;
end
plot(DaeRtuns(TsWidw),\[Nrm95 oma99\])

正态分布方法也称为参数 VaR,因为它的估计涉及计算收益率标准差的参数。正态分布方法的优点是简单。然而,正态分布方法的弱点是假设收益率是正态分布的。正态分布方法的另一个名称是方差-协方差方法。

使用历史模拟方法计算 VaR

与正态分布方法不同,历史模拟 (HS) 是一种非参数方法。它不假设资产收益的特定分布。历史模拟通过假设过去的损益可以作为下一个收益期的损益分配来预测风险。“今天”的 VaR 计算为“今天” 之前 最后_N 次_收益率的 _第 p_个分位数 。

for t = Tstidow
    i = t - Tsidwtt + 1;
    Htrl95(i) = -qate(X,pVR(1));
    Hii99(i) = -qatie(X,pVaR(2));
fiure;
plot(Dtr(Ttow),Hic95Hstrl99
Hic95 Hstrl99)

从上图可以看出,历史模拟曲线具有分段不变的轮廓。其原因是,在极端事件发生之前,量值在几天内不会发生变化。因此,历史模拟方法对波动率的变化反应缓慢。



点击标题查阅往期内容


Python蒙特卡罗(Monte Carlo)模拟计算投资组合的风险价值(VaR)



左右滑动查看更多



01

02

03

04




使用指数加权移动平均法 (EWMA) 计算 VaR

前两个 VaR 方法假设所有过去的收益率都具有相同的权重。指数加权移动平均 (EWMA) 方法分配不相等的权重,尤其是指数递减的权重。最近的收益率具有更高的权重,因为它们对“今天”收益率的影响比过去更远的收益率更大。大小估计窗口上的 EWMA 方差公式 是:

是归一化常数:

为方便起见,我们假设一个无限大的估计窗口来近似方差:

实践中经常使用的衰减因子的值为0.94。这是本示例中使用的值。

启动 EWMA 设置标准偏差。

Laa = 0.94;
for i = 2 : (Tsart-1)
    Sm2(i) = (1-Labda) * Rts(i-1)^2 + Lama * m2(i-1);
在测试窗口中使用 EWMA 来估计 VaR。
for t = TeWio
    EWMA95 (k) = -Zscre(1)*Sima;
    EWMA99(k) = -Zsoe(2)*Siga;
end
plot(DR,EWMA95EWMA99
EWMA95 EWMA99)

在上图中,EWMA 对大(或小)收益率时期的反应非常迅速。

VaR回测

在本示例的第一部分中,使用三种不同的方法和两种不同的 VaR 置信水平在测试窗口上估计了 VaR。VaR 回测的目标是评估 VaR 模型的性能。95% 置信度的 VaR 估计值仅在大约 5% 的时间内被违反。VaR 失败的集群表明缺乏跨时间的独立性,因为 VaR 模型对不断变化的市场条件反应缓慢。

VaR 回测分析中常见的第一步是将收益率和 VaR 估计值绘制在一起。在 95% 的置信水平上绘制所有三种方法,并将它们与收益率进行比较。

Rtnet = Rrns(Tstnow);
DesTst   = Das(TsWnow);
fige;
plot

为了突出不同的方法如何对不断变化的市场条件做出不同的反应,您可以放大收益率值发生巨大和突然变化的时间序列。例如,大约在 1998 年 8 月:

Zm   = (Da >= da(1998,8,5)) & (D <= da(1998,10,31);
br(D,);
for i = 1 : sze(Vata,2)
    sts(D-0.5,VaRData(:,i),VaFt{i});
plot(D(IN95),-N(nN95)

当收益为负 VaR 时,就会发生 VaR 失败。仔细观察 8 月 27 日至 8 月 31 日,会发现收益率显着下降。从 8 月 27 日起,EWMA 更密切、更准确地跟踪收益率趋势。因此,与正态分布方法(7次失败,蓝色)或历史模拟方法(8次失败,红色)相比,EWMA 的 VaR 失败(2)次失败,紫色)较少。

除了可视化工具,您还可以使用统计测试进行 VaR 回测。在此示例中,首先比较正态分布方法在 95% 和 99% VaR 水平下的不同测试结果。

bctet(etet,\[Nrml95 Noml99\]);
summary

摘要报告显示观察到的水平与定义的 VaR 水平足够接近。95% 和 99% VaR 水平至多具有期望失败,其中 N 是观察次数。失败率表明  VaR 水平在范围内,而  VaR 水平不精确并且低估了风险。运行所有支持的测试 (1-VaR_level) x _N_

test(vt)

95%的VaR通过了测试,如二项式和失败比例测试(TL、BIN和POF列)。99%的VaR没有通过这些相同的测试,如拒绝结果所示。在条件覆盖率独立性和间隔时间独立性(ci和tbfi列)中,两个置信度都被拒绝。这个结果表明,VaR的违反不是独立的,可能在短时间内有多次失败的时期。另外,一次失败可能会使其他失败在随后的日子里更有可能发生。

在两个 VaR 置信水平下对三种方法的投资组合运行相同的测试。

rbackest

结果和之前的结果差不多,在95%的水平上,结果基本可以接受。然而,在 99% 水平的结果通常是拒绝。关于独立性,大多数测试通过了条件覆盖独立性测试,连续几天测试独立性。请注意,所有测试都失败了独立性测试之间的时间间隔,它考虑了所有失败之间的时间。这个结果表明所有方法都存在独立性假设的问题。

为了更好地了解这些结果如何在市场条件下发生变化,请查看 2000 年和 2002 年的 95% VaR 置信水平。

n00 = yar(aet) == 2000);

I22 = (ea) == 2002);
v202 = rbks(RtrTt(n202

2000年,这三种方法都通过了所有的测试。但是,2002 年的测试结果大多是所有方法都被拒绝。EWMA 方法似乎在 2002 年表现更好,但所有方法都未能通过独立性测试。

要更深入地了解独立性测试,请查看条件覆盖独立性和失败间隔时间独立性2002 年的测试详细信息。运行各个测试功能。

cci

在 CCI 测试中,知道在时间_t_ -1没有失败的情况下,  在时间_t_发生失败 的概率 p 由下式给出01

在时间_t_发生失败 的概率 p ,知道在时间_t_ -1发生失败, 由下式给出11

从 测试结果中的N00, N10,  N01, N11列来看 ,  三种方法的_p_ 值 01都在 5% 左右,而_p_ 值 11 都在 20% 以上。因为有证据表明一个失败之后出现另一个失败的频率远高于 5%,所以这个 CCI 测试失败了。

在失败间隔时间独立性测试中,查看失败间隔时间分布的最小值、最大值和四分位数,在TBFMin、  TBFQ1、  TBFQ2、  TBFQ3、 列中 TBFMax

tbfi

对于 95% 的 VaR 水平,您预计失败之间的平均时间为 20 天,或每 20 天发生一次失败。但是,对于这三种方法,2002 年的失败间隔时间的中位数介于 5 到 7.5 之间。该结果表明,在一半的情况下,连续两次失败发生在 5 到 7 天内,比期望的 20 天要频繁得多。因此,会发生更多的测试失败。对于正态方法,第一个四分位数是 1,这意味着 25% 的失败发生在连续几天。

参考

Danielsson, J. _金融风险预测:预测市场风险的理论和实践_。威利财经,2012 年。


相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
2月前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
5月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
276 80
|
2月前
|
算法 数据安全/隐私保护
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
|
3月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
3月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
3月前
|
算法
MATLAB在风险管理中的应用:从VaR计算到压力测试
本文介绍如何使用MATLAB进行风险管理,涵盖风险度量(如VaR)、压力测试和风险分解。通过历史模拟法、参数法和蒙特卡洛模拟法计算VaR,评估投资组合在极端市场条件下的表现,并通过边际VaR和成分VaR识别风险来源。结合具体案例和代码实现,帮助读者掌握MATLAB在风险管理中的应用,确保投资组合的稳健性。