基于白鲸优化算法BWO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

简介: 基于白鲸优化算法BWO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

1 主要内容

该程序采用白鲸优化算法+变分模态分解+核极限学习机三种方法组合对短期光伏功率进行预测,当然,该方法同样适用于风电、负荷等方面的预测,通过采用原始数据进行训练和测试,验证了方法的有效性,同时,该程序包内还包括变分模态分解+核极限学习机(vmd+kelm)以及核极限学习机(kelm)预测对比程序,方便对比学习,程序包括必要注释,通用性强!

  • 白鲸优化算法BWO

白鲸优化(BWO)算法一种基于群体的元启发式算法,用于解决优化问题。BWO的灵感来自白鲸的行为,包括三个阶段:探索阶段,开发阶段和鲸鱼坠落阶段。

  • 变分模态分解VMD

核极限学习机KELM

KELM 是在传统 ELM 的基础上延展而来,用核映射代替随机映射,进而将高复杂低维的空间问题转化为高维空间内积运算问题,相较于 ELM 具有更强的网络输出稳定性和泛化能力。在KELM算法中,核参数g 和正则化系数C 是影响KELM预测性能的重要因素。在 KELM 训练学习过程中,核参数 g 具有调节经验风险比例和置信区间的作用,而正则化系数C 用于控制训练误差所占比例的范围,若核参数和正则化系数选择不当,则会使 KELM 的泛化能力大大减弱,从而导致网络输出不稳定,因此对 KELM的核参数和正则化系数进行优化十分必要。因此,这两个参数需要采用智能算法进行参数优化。

2 部分代码

%% 优化(调用函数)
[Best_pos,Best_score,Convergence_curve]=BWO(pop,Max_iteration,lb,ub,dim,fun);
x=Best_pos  ;                 %最优个体 
C = x(1);                    %正则化系数
Kernel_type = 'RBF';             %核函数名
Kernel_para = x(2);                    %核函数参数矩阵
%%
xunlian=[];
cesi=[];
for mode=1:K
    shuchu1 = uoutput(mode,:)';
    input_train =shuru(nn(1:geshu),:);input_train=input_train';
    output_train=shuchu1(nn(1:geshu),:);output_train=output_train';
    input_test =shuru(nn((geshu+1):end),:);input_test=input_test';
    output_test=shuchu1(nn((geshu+1):end),:);output_test=output_test';
    %%
    %样本输入输出数据归一化
    [aa,bb]=mapminmax([input_train input_test]);
    [cc,dd]=mapminmax([output_train output_test]);
    inputn=mapminmax('apply',input_train,bb);
    outputn=mapminmax('apply',output_train,dd);
    
    x_test=mapminmax('apply',input_test,bb);
    y_test=mapminmax('apply',output_test,dd);
    
    train_x=inputn;
    train_y=outputn;
    test_x=x_test;
    test_y=y_test ;
    
    [predict_trainy, predict_testy] = KELM(train_x,train_y,test_x,test_y, C, Kernel_type, Kernel_para);
    
    % 测试集
    test_s1=mapminmax('reverse',predict_testy,dd);%反归一化
    % 训练集
    train_s1=mapminmax('reverse',predict_trainy,dd);%反归一化
    xunlian=[xunlian;train_s1];
    cesi=[cesi;test_s1;];
end



3 程序结果


相关文章
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
7天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
3天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于遗传优化SVM的电机参数预测matlab仿真
本项目基于遗传优化支持向量机预测电机性能参数,输入电机结构参数(铁心高度、厚度、绕组匝数、窗口宽度、导线截面积),输出体积及三轴加速度。使用Matlab2022a开发,含详细注释代码与操作视频。算法通过大量样本数据学习结构与性能间的非线性关系,经遗传算法优化SVM参数,提高预测精度和泛化能力。数据预处理包括清洗与归一化,确保模型训练高效稳定。
|
14天前
|
算法 数据安全/隐私保护
基于惯性加权PSO优化的目标函数最小值求解matlab仿真
本程序基于惯性加权粒子群优化(IWPSO)算法,在MATLAB2022A上实现目标函数最小值求解的仿真。核心代码通过主循环迭代更新粒子速度和位置,动态调整惯性权重,平衡全局探索与局部开发。最终输出最优解及适应度变化图,并绘制等高线图展示优化过程。完整程序运行后无水印。 IWPSO改进了基本PSO算法,通过引入惯性权重因子,提高了复杂优化问题的搜索效率和精度,避免早熟收敛,增强了全局寻优能力。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法matlab仿真
本项目基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法,实现MATLAB仿真,并对比Kawasaki sampler、IMExpert、IMUnif和IMBayesOpt四种方法。核心在于利用历史采样信息动态调整MCMC参数,以高效探索复杂概率分布。完整程序在MATLAB2022A上运行,展示T1-T7结果,无水印。该算法结合贝叶斯优化与MCMC技术,通过代理模型和采集函数优化采样效率。
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
286 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
171 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
151 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章