【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法

简介: 【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法

1 主要内容

当前电力系统中微电网逐步成为发展的主力军,微网中包括分布式电源和负荷,单一的微电网是和外部电源进行连接,即保证用电的效益性,也要保证系统的稳定性,但是多个微电网是否可考虑通过电力网络结构设计来增加系统的鲁棒性,正是本模型考虑的内容。在该研究中,将多微网结构设计问题转化为数据模型,根据系统特点考虑了三种不同的节点类型,并通过基于大规模二进制矩阵的差分进化算法进行优化求解,通过算例验证了方法的有效性。该程序采用matlab编写,模块化编程,有部分注释,有需要的同学可以下载研究。

  • 节点故障网络拓扑变化示意

不同节点故障后,故障节点需要其他节点电源帮助恢复供电,上图即为三种情况下网络拓扑变化示意图。

  • 约束条件

对于I型节点来说,在节点i电源故障时,该类节点需要通过相邻节点电源进行补偿,以维持I节点负荷正常运转,也就是系统需要满足N-1的要求。该类节点约束的数学模型如下:

Si代表相邻节点对i节点可提供的电源功率支撑能力,Gj和Lj分别代表j节点的电源和负荷,通过上面约束能够看出,相邻节点的功率需要完全支撑起i节点的负荷。

对于II型节点,需满足两个节点同时故障仍然能保证系统正常工作,对应的约束数学模型如下:

对于III型节点,需要满足系统N-3的要求,对应约束的数学模型如下:

  • 目标函数

该模型的主要任务是需要系统满足N-k的需求,并确保系统具有稳定性和鲁棒性,从成本角度来看,其目标是需要微网间连接线总长度最小,具体数学模型如下:

2 部分代码

clear; clc; close all
addpath(genpath(pwd));
nP = 20; % Number of nodes, options: 10, 20, 50, 80, 100
pID = 1; % Dataset ID, range: 1-5
timer = tic;
%% Problem parameter settings
load(['MNSDP-LIB\MNSDP_' num2str(nP) '_' num2str(pID) '.mat']);
%% Parameter settings
PopSize = min(10*MCS.N,500); % Population size
MaxGen = 50*MCS.N; % Maximum number of generations
plt = 1; % Whether to draw real-time optimization graphs during execution, default is off (can greatly improve running speed)
%% Initialization
Population = Init(PopSize,pID,MCS);
ConvergenceF = zeros(2,PopSize);
ConvergenceCV = zeros(2,PopSize);
Gb=inf;
%% Start optimization and solving
fprintf('Number of nodes: %3d, Dataset ID: %d\n', nP, pID)
BMODE();
%% Optimization completed
timer = toc(timer);
disp(['Time used: ' num2str(timer) ' seconds']);
BestSol = BestInd(end);
figure
PlotSol() % Plot solution


3 结果一览

4 下载链接

相关文章
|
9天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
137 55
|
15天前
|
机器学习/深度学习 数据采集 人工智能
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
61 15
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
|
18天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
113 30
|
6天前
|
JSON 算法 Java
Nettyの网络聊天室&扩展序列化算法
通过本文的介绍,我们详细讲解了如何使用Netty构建一个简单的网络聊天室,并扩展序列化算法以提高数据传输效率。Netty的高性能和灵活性使其成为实现各种网络应用的理想选择。希望本文能帮助您更好地理解和使用Netty进行网络编程。
25 12
|
7天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
32 3
|
7天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
8天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
46 17
|
19天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。