【问题探讨】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究

简介: 【问题探讨】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究

主要内容  

该模型以环境保护成本和运行成本为双目标构建了微电网优化调度模型,模型目标函数和约束条件复现文献《基于改进粒子群算法的微电网多目标优化调度》,程序的特点是采用非支配排序的蜣螂优化算法NSDBO,实现了柴油发电机、蓄电池、微燃机和主网交互等出力情况,程序实现了四种模式下的求解方案,分别指权值折衷解、总成本最低、运行成本最低和环境保护成本最低,程序采用matlab编写,出图效果较好,注释清楚,方便学习!

但是,程序仍然存在两个问题,主要是约束引起的,在下一章节进行分析。

模型研究  

1.约束设置引发的问题

在模型中需要引入功率平衡约束,具体公式如下:

该程序在实现这个约束采用的是设定可行标志c,c=0时是可行的,c=1是不可行的,该部分代码如下:

%% 电功率平衡约束处理
ele_sum=0;
for i=1:24
   ele_temp(i)=abs(x(i)+x(i+24)+x(i+48)+x(i+72)+x(i+96)+x(i+120)-P_load(i));
   ele_sum=ele_sum+ele_temp(i);
end
f_ele=0;
%电平衡阶梯惩罚系数(未满足电平衡约束惩罚)
if(ele_sum==0)
   f_ele=0.0;
elseif(ele_sum>0&&ele_sum<=100)
   f_ele=1;
elseif(ele_sum>100&&ele_sum<=500)
   f_ele=5;
elseif(ele_sum>500&&ele_sum<=800)
   f_ele=10;
else
   f_ele=50;
end
%% 判断是否为可行解
if ele_sum>4500
    c=1;
else
    c=0;
end


可以看一下22行处的可行阈值为4500,这种阈值的设置必然会导致难以找到完全满足条件的解,阈值太大,平衡约束宽泛失去意义,阈值太小,难以找到有效解。在这种情况下,以折衷解为例得到如下系统出力平衡图。

本来应该是柱状图和折线图呈现平衡状态,但是目前得到的解导致了功率失衡,之前文章【勘误】基于多目标粒子群算法的微电网优化调度【风光、储能、柴油、燃气、电网交互】勘误过这个问题,实质上这个程序就是在源程序的基础上替换了一种求解方法,改善了一下运行效果图,最近的B站视频讲解(改进粒子群算法在分布式电源选址定容中的应用)也提到改正方法,大家可以自行修改一下。

储能约束因为采用罚函数(一般单目标算法使用)方式也有问题,大家可以鉴别一下。

 结果一览  

篇幅所限,只展示一种情况下的出图结果

下载链接

相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应学习算法研究与应用
在深度学习领域,传统的静态模型在处理动态环境和非平稳数据时面临挑战。本文探讨了自适应学习算法在深度学习中的重要性及其应用。通过分析自适应学习算法在模型参数、损失函数和数据分布上的应用,展示了其在提升模型鲁棒性和泛化能力方面的潜力。具体讨论了几种代表性的自适应学习方法,并探索了它们在现实世界中的应用案例,从而展示了其在处理复杂问题和动态数据中的效果。
6 0
|
1天前
|
搜索推荐 算法
【排序】数据结构——排序算法概念及代码详解(插入、冒泡、快速、希尔)
【排序】数据结构——排序算法概念及代码详解(插入、冒泡、快速、希尔)
|
5天前
|
算法
【经典LeetCode算法题目专栏分类】【第10期】排序问题、股票问题与TOP K问题:翻转对、买卖股票最佳时机、数组中第K个最大/最小元素
【经典LeetCode算法题目专栏分类】【第10期】排序问题、股票问题与TOP K问题:翻转对、买卖股票最佳时机、数组中第K个最大/最小元素
|
5天前
|
算法
【经典LeetCode算法题目专栏分类】【第6期】二分查找系列:x的平方根、有效完全平方数、搜索二位矩阵、寻找旋转排序数组最小值
【经典LeetCode算法题目专栏分类】【第6期】二分查找系列:x的平方根、有效完全平方数、搜索二位矩阵、寻找旋转排序数组最小值
|
8天前
|
算法 搜索推荐 数据可视化
【漫画算法】指挥官的排序战术:快速排序算法解密
【漫画算法】指挥官的排序战术:快速排序算法解密
|
3天前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。
|
3天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
4天前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为&quot;Ttttttt111222&quot;,优化后为&quot;Tttttttt333444&quot;,明显改进体现为&quot;Tttttttttt5555&quot;。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用&#39;adam&#39;优化器和超参数调整,最终评估并保存预测结果。
15 0
|
6天前
|
算法 安全
基于龙格库塔算法的SIR病毒扩散预测matlab仿真
该程序使用龙格库塔算法实现SIR模型预测病毒扩散,输出易感、感染和康复人群曲线。在MATLAB2022a中运行显示预测结果。核心代码设置时间区间、参数,并定义微分方程组,通过Runge-Kutta方法求解。SIR模型描述三类人群动态变化,常微分方程组刻画相互转化。模型用于预测疫情趋势,支持公共卫生决策,但也存在局限性,如忽略空间结构和人口异质性。
|
6天前
|
机器学习/深度学习 监控 算法
基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决
YOLOv2算法应用于昆虫检测,提供实时高效的方法识别和定位图像中的昆虫,提升检测精度。核心是统一检测网络,预测边界框和类别概率。通过预测框尺寸估算昆虫大小,适用于农业监控、生态研究等领域。在matlab2022A上运行,经过关键升级,如采用更优网络结构和损失函数,保证速度与精度。持续优化可增强对不同昆虫的检测能力。![image.png](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_e760ff6682a3420cb4e24d1e48b10a2e.png)

热门文章

最新文章