【LSTM时序预测】基于麻雀算法优化长短时记忆SSA-LSTM时序时间序列数据预测(含前后对比)附Matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【LSTM时序预测】基于麻雀算法优化长短时记忆SSA-LSTM时序时间序列数据预测(含前后对比)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

2020 12 21 日,在国家电网公司召开的学习会上,国家电网公司党组

副书记、总经理辛保安表示,随着全国经济的快速恢复,用电量将保持持续的快速发展以及增长,预估 2021 全国社会用电量 7.9 万亿千瓦时,相较于 2020 年增6.5%。一个国家的经济发展评价标准在全社会用电量上可以很好的体现。2010年至 2021 年的全社会用电量如图 1.1 所示。因为电能是一种具有很强实时性的能源,所以电能大规模的储存受制与当前电力储存技术。其发电、传输、以及使用是并行的,故国家电网公司需要参考电力负荷动态的趋势,对相应的发电厂输出的电量进行实时调节。在正常的情况下,发电厂的发电量与电力系统的消耗保持动态平衡[1]。在实际的用电情况中,要保证发电厂的发电量与总的电能消耗保持一个动态平衡。当供大于求的时候则会对电能造成浪费,当供小于求时则会对国家的经济发展以及居民生活造成不良的影响[2]。为了保证国家经济的稳定发展以及居民生活秩序的正常进行,对电力系统可靠经济的运行研究成了电力公司的重点突破对象。以上都需要高精度的短期电力负荷预测为其提供理论依据.高精度的电力负荷预测可为电力公司规划和发电厂的发电量提供理论依据,从而更好的对发电机组的开启与暂停进行配置。依据用电量决定发电机组的投入,从而减少资源的浪费,降低供电成本,提高资源的利用率[4]其中供配电系统的维护与检修,甚至供电公司对电力系统的长远规划建设,需要以电力负荷预测为依据。考虑投入的经济效应以及区域负荷特性,可以有效的减少在不发达区域投入过多的电力系统规划升级,也是响应国家建设良性可持续发展能源社会的号召。国家电网公司对工作安排的理论依据是高精度的短期电力负荷预测结果[5]由国内外的研究结果可知,预测精度提高1%可为国家电网公司减少1000 万的运营成本[6]。在应对突发的用电增加情况也有关键的意义。例如在2011 年持续高温的期间用电量激增,此时国家电网公司依据负荷预测的数据选用最合适的调度方案对电能进行调度,从而缓解了发电厂的发电压力。从以上实际案例分析和理论分析可知,短期电力负荷预测对国家电网公司以及国家具有关键的研究意义:

1)短期负荷预测对未来几天高精度的预测结果,可以为国家电网公司对发电厂的发电机组的启停进行合理的配置提供理论方面的依据。如2011 年的特殊用电情况此时参考预测数据,对相关区域进行相应的跨地区电力调度可以有效的缓解发电厂的压力。

2)装机容量相对大的供配电网络,短期电力负荷预测可以作为该配电网络中发电厂机组启停的重要理论依据,可有效地避免电能资源的浪费。要想对涉及区域面积较大的供配电系统提出配套的发电规划,则需将负荷预测结果、发电机组数量配置、供配电网络架构与当地的负荷特性相结合,保证电力系统中资源利用率最大化。

3)随着电力逐渐的市场化,为了避免不必要的社会矛盾,电力系统则需加快脚步满足我国经济社会的发展要求。电力系统发电成本与电价的制定存在密切的联系。由文献[6]可知提高预测精度可有效地降低电力系统的运行成本,从而提高电能的性价比,可以进一步完善电力市场化的构建以提高电网公司的市场竞争力[7]故高精度的电力负荷预测不管是对电力公司,还是对于一个国家的各个方面都有着十分重要的研究意义。

研究者们发现麻雀是一种群居性鸟类。麻雀除了在繁殖期以及育雏期间,在

秋季的时候可形成雄壮的群体,其中数量有上百或者上千只这就是雀泛,在冬天其主要以小种群活动。区别于其他的雀类麻雀具有聪明以及记性非常强。文献[51]发现了发现者(Producer)以及加入者(Scrounger)两种类型的麻雀存在于圈养家雀中。搜寻食物以及为所有麻雀指明食物搜寻的方向以及地理位置的麻雀视为发现者。通过发现者获得食物的视为加入者。文献[52,53]指出鸟类可熟练的采用上面的行动策略。其能够在发现者和加入者这两种身份进行动态切换。研究发现麻雀可以通过发现者与加入者的行为策略来获得食物[54]。文献[55]研究发现群体中的个别麻雀会监控其他麻雀的行动,且群体中的攻击者会与食物摄取量多的麻雀抢夺资源,从而增加捕食概率,并且能量储备与麻雀群体切换不同的觅食行动息息相关。容易受到捕食者攻击的一般为处在群体外围的麻雀,所以处于外围的麻雀需要及时转换到更好的地区预防攻击者的攻击。同时处于麻雀群体核心位置的麻雀会靠近他们周围的伙伴来达到逃离危险区域的目的[56]。对生物界所有事物的好奇是麻雀先天就具有的天性,其对周围环境的变化具有很强的警惕性。研究者发现当某一麻雀发现自己附近有捕食者时会发出叫声提醒整个群体的麻雀及时远离危险,转移到安全的地区进行觅食。

⛄ 部分代码

function s = Bounds( s, Lb, Ub)

temp = s;

for i=1:length(s)

   if i==4%除了学习率 其他的都是整数

       temp(:,i) =temp(:,i);

   else

       temp(:,i) =round(temp(:,i));

   end

end


% 判断参数是否超出设定的范围


for i=1:length(s)

   if temp(:,i)>Ub(i) | temp(:,i)<Lb(i)

       if i==4%除了学习率 其他的都是整数

           temp(:,i) =rand*(Ub(i)-Lb(i))+Lb(i);

       else

           temp(:,i) =round(rand*(Ub(i)-Lb(i))+Lb(i));

       end

   end

end

s = temp;

⛄ 运行结果

⛄ 参考文献

[1]陶晓玲, 王素芳, 赵峰,等. 基于麻雀搜索算法优化Bi-LSTM的网络安全态势预测方法:.

[2]姜南林. 基于改进麻雀搜索算法优化长短期记忆网络的短期电力负荷预测研究.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
124 80
|
11天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
47 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
20天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
机器学习/深度学习 人工智能 Rust
MindSpore QuickStart——LSTM算法实践学习
MindSpore QuickStart——LSTM算法实践学习
57 2
|
3月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
215 19
|
3月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-GRU的时间序列回归预测matlab仿真
时间序列预测关键在于有效利用历史数据预测未来值。本研究采用卷积神经网络(CNN)提取时间序列特征,结合GRU处理序列依赖性,并用灰狼优化(GWO)精调模型参数。CNN通过卷积与池化层提取数据特征,GRU通过更新门和重置门机制有效管理长期依赖。GWO模拟灰狼社群行为进行全局优化,提升预测准确性。本项目使用MATLAB 2022a实现,含详细中文注释及操作视频教程。

热门文章

最新文章