基于Qlearning强化学习的机器人路线规划matlab仿真

简介: 本内容展示了基于Q-learning强化学习算法的路径规划研究,包括MATLAB仿真效果、理论知识及核心代码。通过训练与测试,智能体在离散化网格环境中学习最优策略以规避障碍并到达目标。代码实现中采用epsilon-贪婪策略平衡探索与利用,并针对紧急情况设计特殊动作逻辑(如后退)。最终,Q-table收敛后可生成从起点到终点的最优路径,为机器人导航提供有效解决方案。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

训练过程
f49ad886fd698ff027f8514920b90bf8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

测试结果

e3cd875f607983a31393107069112cd8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
强化学习是机器学习中的一个重要领域,它主要研究智能体(agent)如何在环境中通过不断地试错来学习最优策略(policy),以最大化长期累积奖励(reward)。在机器人路线规划问题中,机器人即为智能体,其所处的地图环境包含了起点、终点、障碍物等元素,机器人的目标是找到一条从起点到终点的最优路径,同时避免碰撞障碍物。

   Q - 值的更新公式为:

94f247b70cb390bdfa9635f875043ee5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  首先需要对机器人所处的环境进行建模。将地图离散化为一个个网格单元,每个网格单元可以表示为一个状态。例如,对于一个二维平面地图,状态,其中和分别表示网格单元在和方向上的索引。障碍物所在的网格单元被标记为不可达状态,起点和终点也分别有对应的状态表示。

  动作空间可以定义为向上、向下、向左、向右移动一个网格单元。当然,根据机器人的运动能力,还可以添加如旋转等其他动作。

智能体与环境交互学习:

9b8d243e4852bde49c9fad7c1088d090_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在学习过程中,机器人不断地探索环境并更新 Q - table。当学习过程收敛后(即 Q - table 中的值不再有明显变化),机器人可以根据 Q - table 进行路径规划。从起点状态开始,在每个状态下选择 Q 值最大的动作,直到到达终点状态,这样得到的一系列动作序列就是规划出的最优路径(在 Q - learning 算法收敛到的近似最优解意义下)。

   Q - learning 强化学习方法与基于采样的方法相比,更注重对长期累积奖励的学习和优化。基于采样的方法在采样过程中可能会产生一些无效的采样点,而 Q - learning 算法通过学习 Q 值来引导机器人选择更有希望的动作,减少无效探索。

3.MATLAB核心程序
```for i=1:Epechs
if Emg==1
a=4; % 如果处于紧急情况(emergency为1),则将动作a设置为4,从代码逻辑推测动作4可能代表向后退的动作(具体含义要结合整体代码设定来看),目的是在遇到紧急情况(比如距离障碍物过近等)时,智能体采取向后退的操作来避免碰撞,保证探索过程的安全性
else% 如果不处于紧急情况(emergency为0),则进入以下分支进行动作选择操作,根据epsilon - 贪婪策略来决定是选择当前已知的最优动作还是随机选择一个动作。
if rand<(1-epsilon)% 如果生成的随机数(rand函数会生成一个在0到1之间的均匀分布随机数)小于 (1 - epsilon),说明按照概率应该选择当前已知的最优动作,此时调用max函数找到动作价值矩阵Q中当前状态s_index对应的行(即当前状态下执行不同动作的价值估计值所在行)中的最大值以及其对应的列索引,将最大值对应的列索引赋值给动作变量a,即选择当前状态下价值估计最高的动作作为要执行的动作,这体现了利用已知最优策略的部分
[q,a] = max(Q(State_idx,:));
else% 如果生成的随机数大于等于 (1 - epsilon),说明按照概率应该随机选择一个动作,此时调用randi函数在动作数量范围(1到Nactions)内随机生成一个整数,将其赋值给动作变量a,即随机选择一个可执行的动作,这体现了探索新动作的部分
a=randi(Nactions);
end
end

    % 执行选择的动作并到达下一个状态,以下代码调用func_env函数,传入选择的动作a、当前状态s、状态类型type、当前位置location、迷宫坐标信息maze_coordinates、临界距离critical_distance以及紧急距离emergency_distance作为参数,获取的返回值分别赋值给agent_next_location、reward、next_s_type、next_state、terminal、emergency变量,用于实现智能体执行动作后的位置更新(agent_next_location)、获取执行动作后的奖励值(reward)、确定下一个状态的类型(next_s_type)、下一个状态向量(next_state)、判断是否达到终止状态(terminal)以及是否处于紧急情况(emergency)等操作,完成一次动作执行后的状态转移和相关信息更新
    [Loc_next,reward,tp_next,state_next,Ends,Emg]=func_env(a,s,type,location,Mapxy,distc,diste);

    % 更新用于绘制的智能体原点轨迹信息,每执行一次动作到达新位置后,将索引变量j的值加1,然后将智能体新位置agent_next_location中第一个点(即原点)的坐标赋值给轨迹数组trajectory的第j行,以此记录智能体在探索过程中原点位置的变化轨迹,方便后续可视化展示智能体的移动路径情况
    j=j+1;


    % 调用func_stateidx函数,传入下一个状态向量next_state以及下一个状态的类型next_s_type作为参数,获取的返回值赋值给s_index_next变量,用于确定下一个状态在Q矩阵中的索引,方便后续基于该索引对动作价值矩阵Q进行更新操作,保持状态与价值估计信息的对应关系
    idx_next=func_stateidx(state_next,tp_next);

    if a~=4 
        % 如果执行的动作不是紧急情况对应的动作(即不是动作4,从前面代码可知动作4可能代表向后退的紧急动作),说明是正常的探索动作,执行以下更新动作价值矩阵Q的操作,通过基于当前奖励值reward、折扣因子gamma以及下一个状态的最大价值估计值(通过max(Q
        Q(State_idx,a)=Q(State_idx,a)+alpha*(reward+gamma*max(Q(idx_next,:))-Q(State_idx,a));
    end

    %更新状态
    s        = state_next;
    location = Loc_next;
    type     = tp_next;  
    State_idx= idx_next;


    if i==Epechs
       figure(2)
       [Mapxy]=func_Map();
       plot(location(1,1),location(1,2),'r-o','MarkerSize',2);  
       hold on
    end
end

end
```

相关文章
|
5月前
|
传感器 算法 安全
【四旋翼飞行器】【模拟悬链机器人的动态】设计和控制由两个四旋翼飞行器推动的缆绳研究(Matlab代码实现)
【四旋翼飞行器】【模拟悬链机器人的动态】设计和控制由两个四旋翼飞行器推动的缆绳研究(Matlab代码实现)
126 0
|
7月前
|
算法 数据可视化 机器人
机器人骑自行车过程的MATLAB建模与数值仿真模拟
本程序基于MATLAB 2022A实现机器人骑自行车过程的三维建模与仿真,通过多个函数构建机器人躯干、手臂及自行车各部件的几何模型,并利用空间变换与旋转矩阵实现动态模拟。核心代码调用多个子函数生成模型组件并绘制三维图像,结合参数设置与坐标变换,完成整体系统的可视化仿真。
|
7月前
|
传感器 算法 安全
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
888 64
|
5月前
|
算法 机器人 Serverless
【机器人路径规划】基于6种算法(黑翅鸢优化算法BKA、SSA、MSA、RTH、TROA、COA)求解机器人路径规划研究(Matlab代码实现)
【机器人路径规划】基于6种算法(黑翅鸢优化算法BKA、SSA、MSA、RTH、TROA、COA)求解机器人路径规划研究(Matlab代码实现)
581 2
|
5月前
|
算法 安全 机器人
【路径规划】基于遗传算法结合粒子群算法求解机器人在复杂不同类型下的路径规划研究(Matlab代码实现)
【路径规划】基于遗传算法结合粒子群算法求解机器人在复杂不同类型下的路径规划研究(Matlab代码实现)
147 4
|
5月前
|
机器学习/深度学习 算法 机器人
使用Koopman理论识别机器人动力学的非线性系统(Matlab代码实现)
使用Koopman理论识别机器人动力学的非线性系统(Matlab代码实现)
268 5
|
5月前
|
机器学习/深度学习 存储 算法
【水下机器人建模】基于QLearning自适应强化学习PID控制器在AUV中的应用研究(Matlab代码实现)
【水下机器人建模】基于QLearning自适应强化学习PID控制器在AUV中的应用研究(Matlab代码实现)
390 0
|
6月前
|
机器学习/深度学习 算法 机器人
基于Qlearning强化学习的2DoF机械臂运动控制系统matlab仿真
本项目基于Q-learning强化学习算法,实现对二自由度机械臂的运动控制仿真。通过MATLAB 2022a平台,验证了算法在状态、动作与奖励机制下的学习效果,展示了机械臂自主学习达到目标位置的能力。内容涵盖理论模型、算法原理与核心代码实现。
184 7
|
6月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
195 2
|
6月前
|
算法 机器人 定位技术
基于机器视觉和Dijkstra算法的平面建筑群地图路线规划matlab仿真
本程序基于机器视觉与Dijkstra算法,实现平面建筑群地图的路径规划。通过MATLAB 2022A读取地图图像,识别障碍物并进行路径搜索,支持鼠标选择起点与终点,最终显示最优路径及长度,适用于智能导航与机器人路径规划场景。

热门文章

最新文章