基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。

1.程序功能描述
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真,仿真输出计算违约点,资产价值波动率,信用溢价,信用溢价直方图等指标。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

(完整程序运行后无水印)

3.核心程序

DP = SD+k*LD;

figure;
subplot(121);
plot(SD(1:end-NN/2));
subplot(122);
plot(DP(1:end-NN/2));


%%
%资产价值波动率-图2
R    = func_Rsy(dat1);
zeta = func_GARCH(R);
figure;
plot(zeta);
xlabel('times');
ylabel('资产波动率');
axis([0,300,0.283,0.288]);


%%
%信用溢价和表2数据分析
[Rc,d] = func_xyyj(dat1,zeta,DP);

figure;
subplot(121);
plot(Rc);
xlabel('times');
ylabel('信用溢价');
axis([0,800,0.0,0.05]); 
subplot(122);
hist(Rc,100);
axis([0,0.1,0.0,80]); 
ylabel('信用溢价直方图');
d(1:7)'
d(8)'


%%
%信用风险部分的参数估计表3的结果
beta_mean = mean(Rc); %求均值
beta_std = std(Rc);   %求标准差
a = (((1-beta_mean)*(beta_mean.^2))/(beta_std.^2) - beta_mean); 
b = ((1-beta_mean)/beta_mean)*a; 

disp('a值');
a

disp('b值');
b

%自信区间
[a-1.96*beta_std*a,a+1.96*beta_std*a] 
[b-1.96*beta_std*b,b+1.96*beta_std*b] 



%%
%QQ图
figure;
subplot(121);
hist(Rc,100);
axis([0,0.1,0.0,80]); 
ylabel('信用溢价直方图');
subplot(122);
qqplot(Rc);
ylabel('Q-Q图');

%%
%Var Cvar 
[VaR1,CVaR1]=var_cvar(Rc,0.95); 
[VaR2,CVaR2]=var_cvar(Rc,0.99); 

disp('历史模拟');
disp('    0.95                0.99');
[VaR1,CVaR1,VaR2,CVaR2]


[VaR1,CVaR1]=var_cvar_mtkl(Rc,0.95); 
[VaR2,CVaR2]=var_cvar_mtkl(Rc,0.99); 

disp('蒙特卡洛模拟');
disp('    0.95                0.99');
[VaR1,CVaR1,VaR2,CVaR2]

4.本算法原理
GARCH-Copula-CVaR模型是一种复杂的风险度量框架,广泛应用于金融市场,特别是用于分析和量化系统性风险的溢出效应。该模型结合了三个重要的理论框架:广义自回归条件异方差模型(Generalized Autoregressive Conditional Heteroskedasticity, GARCH)、Copula理论以及条件价值风险(Conditional Value at Risk, CVaR)。

   GARCH模型主要用于描述和预测资产收益序列的波动性。基本的GARCH(p,q)模型表述为:

618e983e8a4347dc7e2ac148fb31b74a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,σt2​表示在时间t上的条件波动率;ω是常数项;αi​和βj​分别是过去收益率平方项和过去波动率项的权重系数;p和q分别为模型的滞后阶数;rt​是资产的日对数收益率。

   Copula是用来描述多个随机变量之间依赖结构的一种强大工具。假设我们有两个资产的边际分布函数分别为F1​(x)和F2​(y),通过一个合适的Copula函数C(u1​,u2​),我们可以得到它们的联合分布函数:

b743d0064dee458af9c312fd5f47046d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    其中,u1​=F1​(x)和u2​=F2​(y)是变量的边际分布的累积分布函数值。常见的Copula函数有高斯Copula、t-Copula、Clayton和Frank Copula等,它们各自捕捉不同类型的依赖结构。

    CVaR,也称为期望尾部损失(Expected Shortfall),是风险度量的一种,它衡量的是在给定的置信水平α下,预期超过VaR(Value at Risk)的损失平均值。对于一个随机变量X,其在置信水平α下的CVaR定义为:

64335a001697e9f80b194394b588fadb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在GARCH-Copula-CVaR模型中,首先使用GARCH模型估计单个资产的波动性,然后通过Copula方法捕捉资产间的相关性和极端事件的依赖结构,最后应用CVaR来度量整个金融系统的风险溢出效应。

具体步骤如下:

GARCH模型应用:对每个资产的收益率序列分别拟合GARCH模型,得到每个资产的条件波动率序列{σti​}。

Copula联合分布:利用各资产收益率的边际分布函数和选择的Copula函数,构建多资产的联合分布。首先,将每个资产的收益率标准化为标准正态分布(或其他分布),然后通过Copula函数得到联合分布。

系统性风险溢出计算:基于联合分布,计算整个系统在特定置信水平下的CVaR。这一步骤涉及计算所有资产组合的损失分布的上尾部分,反映了极端市场情况下整个系统可能面临的平均损失水平,即系统性风险溢出。

相关文章
|
21天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
14天前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
29天前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
17天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
26天前
|
算法 数据安全/隐私保护
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
19天前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
26天前
|
算法 安全 数据安全/隐私保护
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
|
28天前
|
算法 数据安全/隐私保护
基于分数Talbot效应的阵列光学涡旋产生matlab模拟与仿真
本程序基于分数Talbot效应,使用MATLAB(2013b版本)模拟与仿真光学涡旋阵列的生成,测试了正方形、旋转正方形和六边形三种阵列形状下的光学涡旋效果。分数Talbot效应是经典Talbot效应的推广,可精确控制衍射光场在任意距离处的重现,生成复杂光场分布,包括光学涡旋阵列。程序运行结果展示无水印,核心代码完整,适用于研究分数Talbot效应对光学涡旋的应用场景。
下一篇
oss创建bucket