基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真

简介: 本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。

1.算法运行效果图预览
(完整程序运行后无水印)
1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```% 创建一个训练选项结构体opts,用于配置网络训练的各种参数:
% "adam"表示使用Adam优化器进行训练;
% "ExecutionEnvironment","auto"表示自动选择执行环境(如GPU或CPU);
% "GradientThresholdMethod","global-l2norm"指定梯度阈值的计算方法为全局L2范数;
% "InitialLearnRate",0.001设置初始学习率为0.001;
% "MiniBatchSize",32表示每个小批次的样本数量为32;
% "MaxEpochs",20设置最大训练轮数为20;
% "Shuffle","every-epoch"表示每一轮训练前都对数据进行打乱;
% "Plots","training-progress"表示在训练过程中绘制训练进度相关的图表;
% "ValidationData",augimdsValidation指定验证数据为augimdsValidation
opts = trainingOptions("adam",...
"ExecutionEnvironment","auto",...
"GradientThresholdMethod","global-l2norm",...
"InitialLearnRate",0.001,...
"MiniBatchSize",32,...
"MaxEpochs",20, ...
"Shuffle","every-epoch",...
"Plots","training-progress",...
"ValidationData",augimdsValidation);

% 创建一个空的层图对象lgraph,后续将在这个层图上添加各种神经网络层来构建完整的网络结构
lgraph = func_mobileNet_layer(classs);

figure
plot(lgraph)
% Train Network
[net, traininfo] = trainNetwork(augimdsTrain,lgraph,opts);

save Net.mat net traininfo

```

4.算法理论概述
在现代无线通信系统中,信号调制类型的识别对于频谱监测、信号解调、干扰识别等任务具有至关重要的意义。MQAM 作为一种广泛应用的高效调制方式,能够在有限的带宽内传输更多的信息。随着深度学习技术的飞速发展,其在信号处理领域的应用日益广泛。MobileNet 深度学习网络以其轻量化、高效性的特点,特别适合于资源受限环境下的信号识别任务。基于 MobileNet 网络实现 MQAM 调制类型识别,能够在保证较高识别准确率的同时,降低计算复杂度和资源消耗,为无线通信系统的智能化发展提供有力支持。

4.1 MQAM调制原理

image.png

4.2 MobileNet 网络架构
MobileNet 网络主要采用深度可分离卷积(Depthwise Separable Convolution)来构建轻量化的网络结构。其网络架构通常由多个卷积层、深度可分离卷积层、池化层、全连接层以及激活函数层组成。其结构如下图所示:

image.png

   基于MobileNet深度学习网络的MQAM调制类型识别方法利用了 MobileNet 网络的轻量化和高效性特点,结合 MQAM 调制的数学原理与信号特征,通过数据预处理、网络训练与优化等一系列步骤。通过深入分析 MQAM 调制的数学模型、MobileNet 网络的架构与计算原理,以及识别过程中的数据处理、参数更新等机制,并采用性能分析指标评估网络性能、运用优化策略提升网络效果,为无线通信领域中的调制类型识别提供了一种先进的技术方案。
相关文章
|
9天前
|
数据可视化
基于MATLAB的OFDM调制发射与接收仿真
基于MATLAB的OFDM调制发射与接收仿真
|
18天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
120 0
|
18天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
15天前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
|
18天前
|
传感器 数据采集 存储
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
|
18天前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
|
10月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
226 17
|
10月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
178 10
|
10月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章