并行计算

首页 标签 并行计算
# 并行计算 #
关注
5041内容
|
1天前
|
谷歌量子计算机:开启计算新时代
谷歌量子计算机是现代信息技术的前沿成果,基于量子力学原理构建,具有超越经典计算机处理复杂问题的巨大潜力。谷歌通过研发“悬铃木”处理器等,实现了量子霸权,在量子化学模拟和优化问题求解等领域取得显著成就。尽管面临量子比特稳定性和纠错等挑战,谷歌持续创新,为新时代计算奠定基础。
阿里云GPU云服务器优惠收费标准,GPU服务器优缺点与适用场景详解
随着人工智能、大数据分析和高性能计算的发展,对计算资源的需求不断增加。GPU凭借强大的并行计算能力和高效的浮点运算性能,逐渐成为处理复杂计算任务的首选工具。阿里云提供了从入门级到旗舰级的多种GPU服务器,涵盖GN5、GN6、GN7、GN8和GN9系列,分别适用于图形渲染、视频编码、深度学习推理、训练和高性能计算等场景。本文详细介绍各系列的规格、价格和适用场景,帮助用户根据实际需求选择最合适的GPU实例。
|
4天前
|
《解锁 Eigen 库在 C++人工智能项目中的潜能与优化之道》
Eigen 库是 C++ 人工智能项目的得力助手,专注于线性代数运算,广泛应用于神经网络、数据预处理和优化算法等领域。其高效的内存布局、表达式模板和多线程并行计算等优化技巧,显著提升了项目性能,助力开发者构建高效的人工智能系统。
|
6天前
| |
来自: 无影
《CST Studio Suite 2024 GPU加速计算指南》
《GPU Computing Guide》是Dassault Systèmes发布的CST Studio Suite 2024的GPU计算指南,涵盖了硬件支持、操作系统支持、许可证、启用方法、NVIDIA和AMD GPU的详细信息及使用指南和故障排除等内容。硬件支持包括NVIDIA和AMD的多种GPU型号,操作系统支持多种版本,许可证通过加速令牌或SimUnit令牌授权。启用方法包括交互式模拟和批处理模式。使用指南和故障排除部分提供了详细的配置和问题解决方法。
|
7天前
| |
Differential Transformer: 通过差分注意力机制提升大语言模型性能
《Differential Transformer》论文提出了一种新的差分注意力机制,旨在解决传统Transformer模型过分关注不相关信息的问题。该机制通过计算两个独立的注意力图谱之差来消除注意力噪声,提高模型性能。实验结果显示,DIFF Transformer在减少参数量和训练token数量的同时,显著提升了多目标检索任务的准确率。
|
7天前
|
《量子计算对人工智能发展的深远影响》
在科技发展的浪潮中,量子计算与人工智能的融合正引领着深刻的科技变革。量子计算利用量子比特的叠加和纠缠特性,实现并行计算,显著提升机器学习训练速度、优化问题求解、大数据分析能力及AI模型泛化能力,催生新型AI算法,并拓展新应用领域。然而,这一融合仍面临硬件稳定性和软件开发等挑战。
|
8天前
|
《探索C++在3D重建中的算法与技术要点》
3D重建是计算机视觉的重要技术,广泛应用于多个行业。C++因其高效性和对底层硬件的良好控制,成为实现3D重建算法的首选语言。本文介绍了多视图立体视觉、立体匹配、点云处理与重建、网格重建与优化、纹理映射及CUDA加速等关键技术,详细阐述了各算法的原理和C++实现要点。
Maya:基于 LLaVA 开发的多模态小模型,能理解和处理八种语言,适用于低资源环境
Maya 是一个开源的多语言多模态模型,能够处理和理解八种不同语言,包括中文、法语、西班牙语、俄语、印地语、日语、阿拉伯语和英语。该模型基于LLaVA框架,通过指令微调和多语言数据集的预训练,提升了在视觉-语言任务中的表现,特别适用于低资源语言的内容生成和跨文化理解。
|
9天前
|
《C++赋能自然语言处理:词向量模型的构建与应用》
自然语言处理(NLP)中的词向量模型通过将单词映射到低维向量空间,捕捉语义和语法关系,支持文本分类、情感分析等任务。C++以其高性能和资源管理能力,成为构建此类模型的理想选择,尤其在处理大规模数据、复杂计算和优化算法方面表现突出,支持高效的并行计算和内存管理,助力NLP技术的发展。
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
免费试用