索引

首页 标签 索引
# 索引 #
关注
67130内容
大模型应用:向量与元数据联动:解锁向量数据库复合查询的核心能力.30
本文深入解析向量数据库中“向量+元数据”复合查询技术:通过融合语义相似性与结构化过滤(如时间、标签、权限等),显著提升RAG等场景的检索精度、效率与业务适配性,并结合Chroma实战演示三种查询路径及多行业应用。
|
17小时前
| |
生成式搜索中的向量空间锚定实践:一次医疗GEO工程的技术拆解
本文基于真实医疗案例,从技术视角解析生成式搜索优化(GEO):通过知识图谱构建、Embedding维度压缩(1536→1024维)、RAG幻觉控制与Schema结构化,提升向量召回与引用稳定性。5个月实测显示AI可见度+26%、SOV+133%、幻觉率下降13%。(239字)
大模型应用:近似最近邻搜索(ANN)算法驱动向量数据库的高效检索.29
本文深入解析向量检索核心:精确最近邻(Brute-force)与近似最近邻(ANN)算法。详述BF原理、计算方式及性能瓶颈;系统对比KD-Tree、Ball-Tree、LSH、HNSW等ANN算法原理、特性与适用场景,并结合RAG与大模型长上下文应用,揭示其在AI时代的关键支撑作用。
|
1天前
|
智能体全栈构建实操:OpenClaw部署+Agent Skills+Seedance+RAG从入门到实战
AI智能体的发展正从单一的聊天交互走向多能力融合的自主行动阶段,而OpenClaw作为开源的智能体编排框架,凭借极强的工具整合能力、灵活的技能扩展体系,成为连接Agent Skills、RAG检索增强生成、Seedance多模态视频生成的核心枢纽。本文基于智能体构建实战体系,从AI Agent基础理论出发,详解OpenClaw环境搭建、Agent核心技能拆解、RAG知识库构建,最终落地**Seedance+RAG+OpenClaw**的AI影视广告创意助手综合案例,同时附上**阿里云OpenClaw(Clawdbot)极速部署步骤**与可直接复用的代码命令,覆盖从基础操作到企业级案例的全流程,
|
3天前
| |
大模型应用:RAG与向量数据库结合Ollama调用模型深度融合全解析.27
本文以本地员工手册智能问答为例,系统讲解RAG与向量数据库的深度融合:从RAG原理、FAISS向量库构建、Ollama本地大模型部署,到文档分块、检索增强、问答链搭建及效果评估,实现安全、高效、可落地的私有化智能问答系统。
|
4天前
| |
大模型应用:面向结构化表格的 RAG 实践:技术架构与特性解析.26
本文提出面向结构化表格的RAG新模式,突破传统RAG将表格转为纯文本导致语义丢失、多表融合低效、版本兼容性差等瓶颈。通过结构化解析、元数据增强、向量索引优化与精细化检索,实现行列语义保留、跨表关联查询及本地轻量化部署,显著提升财务、政务等场景下Excel/CSV数据的检索精度与问答质量。
|
4天前
| |
2026 年,医疗机构继续重仓“竞价排名”是否理性?——从技术视角看医疗GEO与数字信誉资产
2026年,AI生成式搜索重构医疗流量逻辑:单纯依赖“竞价排名”已成技术错配。本文从数据治理与合规工程出发,提出“医疗GEO”(生成式引擎优化)新范式——以知识图谱、资质核验、循证校验构建可被大模型信任的数字信誉资产,推动行业从流量采购迈向信誉工程。(239字)
|
5天前
| |
大模型应用:LlamaIndex 与 LangChain 深度集成构建本地化RAG系统.25
本文详解LlamaIndex与LangChain协同构建本地化RAG系统:以Qwen1.5-1.8B-Chat为基座,通过轻量化验证与工程化落地两阶段示例,实现文档索引、语义检索、提示编排与问答生成全链路本地化,兼顾准确性、可控性与可扩展性。
|
7天前
| |
深度解析:GEO(生成式引擎优化)在医疗行业的底层逻辑与战略权重
GEO(生成式引擎优化)是AI时代医疗品牌赢得语义信任的核心战略。它通过结构化知识注入、语义权威构建与证据链强化,提升医疗机构在LLM输出中的引用率与专业可信度,将传统流量竞争升维为“语义主权”博弈。(239字)
免费试用