智能对话机器人

首页 标签 智能对话机器人
# 智能对话机器人 #
关注
193内容
【OpenVI—AI热点日报】9月25日
AI热点日报隆重推出! 我们汇集了最新的AI热点信息、最新论文和观点,为您提供最前沿的AI领域资讯。 (往期链接请在子社区查看官方博文哦~)
AI智能语音机器人有什么优势呢
1.高效自动拨号功能。 导入客户数据,外呼机器人自动拨号,无需看守,真人录音话术,定制场景问答和1秒内的问答响应,为客户带来真实准确的咨询体验。同时,每次通话结束后,外呼系统根据通话时间和关键词将拨号对象分级,实时推送到企业微信,提醒坐席及时跟进。有关系统问题欢迎和博主进行技术交流。 kelaile520 2.实时反馈和及时迭代   外呼机器人每次呼叫都会保留录音,文本翻译会立即显示在后台。通过听录音和看翻译,我们可以知道语音设置是否符合对话场景,从而调整、补充和优化话术。经过多次迭代和优化,外呼机器人将更加灵活,这是大家说机器人聪明的关键步骤。 3.准确的语音识别   
ai智能语音机器人运营的核心
​  运营机器人核心关注的只有两个点,一个是机器人话术库的关键词是否充足,二是对录音的高要求。每一个话术,都把它当成一个重要的项目来做。比如做需求调研,学习客户的行业知识,了解他们这个行业打电话的语气语调。其它的东西,能拿出来运营的机器人产品,核心的东西都不会差到哪去。有关系统问题欢迎看博主名字一起技术交流。![](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/e1589ad7c9f1423bb24c7f5f6a2bcc42~tplv-k3u1fbpfcp-jj-mark:0:0:0:0:q75.image#?w=814&h=232&s=
人工智能,应该如何测试?(七)大模型客服系统测试
这篇文稿讨论了企业级对话机器人的知识引擎构建,强调了仅靠大模型如 GPT 是不够的,需要专业领域的知识库。知识引擎的构建涉及文档上传、解析、拆分和特征向量等步骤。文档解析是难点,因文档格式多样,需将内容自动提取。文档拆分按语义切片,以便针对性地回答用户问题。词向量用于表示词的关联性,帮助模型理解词义关系。知识引擎构建完成后,通过语义检索模型或问答模型检索答案。测试环节涵盖文档解析的准确性、问答模型的正确率及意图识别模型的性能。整个过程包含大量模型组合和手动工作,远非简单的自动化任务。
揭秘开发效率提升秘籍:如何通过Apache Wicket组件重用技巧大翻新用户体验
【8月更文挑战第31天】张先生在开发基于Apache Wicket的企业应用时,发现重复的UI组件增加了维护难度并影响加载速度。为优化体验,他提出并通过面板和组件重用策略解决了这一问题。例如,通过创建`ReusableLoginPanel`类封装登录逻辑,使得其他页面可以轻松复用此功能,从而减少代码冗余、提高开发效率及页面加载速度。这一策略还增强了应用的可维护性和扩展性,展示了良好组件设计的重要性。
免费试用