Prometheus 与 Kubernetes 的集成
【8月更文第29天】随着容器化应用的普及,Kubernetes 成为了管理这些应用的首选平台。为了有效地监控 Kubernetes 集群及其上的应用,Prometheus 提供了一个强大的监控解决方案。本文将详细介绍如何在 Kubernetes 集群中部署和配置 Prometheus,以便对容器化应用进行有效的监控。
【TiDB原理与实战详解】1、原理与基础优化~学不会? 不存在的!
TiDB 是一款开源的分布式关系型数据库,具备水平扩展、高可用性和强一致性等特点,适用于高并发、低延迟的大规模数据处理场景。其架构设计灵感源自 Google 的 Spanner 和 F1,并兼容 MySQL。TiDB 集群由 TiDB Server(无状态 SQL 层)、PD(元数据管理模块)和 TiKV Server(分布式存储层)组成,还包含 TiFlash(列存储引擎)以加速分析型查询。TiDB 支持分布式事务和多种事务模式,适用于 OLTP 和 HTAP 场景,如电商平台和金融系统。此外,TiDB 的部署要求包括高性能硬件配置和特定网络设置,以确保系统的稳定性和高效运行。
自定义grafana_table(数据源Prometheus)
综上所述,自定义 Grafana 表格并将 Prometheus 作为数据源的关键是理解 PromQL 的查询机制、熟悉 Grafana 面板的配置选项,并利用 Grafana 强大的转换和自定义功能使数据展示更为直观和有洞见性。随着对这些工具更深入的了解,您将可以创建出更高级的监控仪表盘,以支持复杂的业务监控需求。
基于阿里云可观测产品构建企业级告警体系的通用路径与最佳实践
本文围绕企业级告警体系构建展开,探讨了监控与告警在系统稳定性中的重要作用。通过梳理监控对象、分析指标、采集数据及配置规则等环节,提出告警体系建设的通用流程,并针对多平台告警、误报、告警风暴等问题提供解决思路。结合阿里云可观测产品,分享了某电商企业的实践案例,展示了如何通过标签规范、日志标准和统一管理平台实现高效告警处置,为构建全面且实用的告警体系提供了参考指南。
日志收集和Spring 微服务监控的最佳实践
在微服务架构中,日志记录与监控对系统稳定性、问题排查和性能优化至关重要。本文介绍了在 Spring 微服务中实现高效日志记录与监控的最佳实践,涵盖日志级别选择、结构化日志、集中记录、服务ID跟踪、上下文信息添加、日志轮转,以及使用 Spring Boot Actuator、Micrometer、Prometheus、Grafana、ELK 堆栈等工具进行监控与可视化。通过这些方法,可提升系统的可观测性与运维效率。
Java 17 异步多线程视频上传实战
本文基于Java 17实现了企业级的异步多线程视频上传方案,核心是自定义IO密集型线程池 + CompletableFuture异步编程 + 分片上传优化,并扩展了阿里云OSS集成、进度回调、断点续传、分布式锁、日志监控等关键特性。