《深度探秘:Java构建Spark MLlib与TensorFlow Serving混合推理流水线》
本文探讨了如何结合Apache Spark MLlib、TensorFlow Serving和Java构建混合推理流水线。Spark MLlib利用分布式计算高效处理大规模数据,完成模型训练;TensorFlow Serving专注于模型部署,提供稳定高效的推理服务;Java则以其稳健性协调两者,实现高性能与扩展性。文章分析了环境搭建、模型训练与集成、输入输出处理及性能优化等关键环节,并讨论了兼容性与性能瓶颈等挑战。这一架构在医疗、金融等领域具有广阔应用前景,展现了强大的技术潜力。
【赵渝强老师】Scala编程语言
Scala 是一种集成面向对象与函数式编程特性的多范式语言,运行于 Java 平台并兼容 Java 程序。学习 Scala 为掌握 Spark 和 Flink 打下基础。本文通过视频讲解及代码示例,展示如何用 Scala 在 Spark 和 Flink 中实现 WordCount 程序,包括环境配置、数据处理及输出操作,帮助理解其实际应用。
从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升
Grab 是东南亚领先的超级应用,其 Spark 可观测平台 Iris 核心存储迁移到 StarRocks 后性能显著提升。新架构统一了实时与历史数据分析,减少多平台切换复杂性,查询速度提升 10 倍以上,资源使用效率提高 40%。通过物化视图、动态分区和直接 Kafka 摄取数据等优化,简化数据管道并降低运维成本。未来 Grab 将进一步增强推荐系统、集成机器学习,持续优化用户体验与系统可扩展性。
《深度剖析Spark SQL:与传统SQL的异同》
Spark SQL是Apache Spark生态系统中用于处理结构化数据的组件,作为大数据时代的SQL利器,它在继承传统SQL语法和逻辑思维的基础上,重新定义了数据处理的效率与灵活性。相比传统SQL,Spark SQL支持分布式计算、内存处理及多种数据源,可高效应对PB级数据挑战。其核心概念DataFrame提供优化查询能力,使数据分析更便捷。两者虽有联系,但在处理规模、计算模式和优化策略上差异显著,共同满足不同场景下的数据需求。