Spark

首页 标签 Spark
# Spark #
关注
9105内容
| |
来自: 云存储
表格存储Tablestore权威指南(持续更新)
表格存储本着提升用户体验的思路,打造《表格存储Tablestore权威指南》。为用户提供可借鉴的开发指导、经典案例。经典案例按照场景应用类型划分,目前提供五类场景:元数据、消息数据、轨迹溯源、科学大数据以及物联网;每个类型下都会提供多种经典场景。
助力云上开源生态 - 阿里云开源大数据平台的发展
阿里云E-MapReduce (EMR) 是构建在阿里云云服务器 ECS 上的开源 Hadoop、Spark、HBase、Hive、Flink 生态大数据 PaaS 产品。提供用户在云上使用开源技术建设数据仓库、离线批处理、在线流式处理、即时查询、机器学习等场景下的大数据解决方案。在2019杭州云栖大会大数据生态专场上,阿里巴巴高级产品专家夏立为大家分享了阿里云EMR如何助力云上开源生态。
玩转阿里云EMR三部曲-中级篇 集成自有服务
利用EMR引导操作可以使用自定义脚本安装任意自有服务和环境,隔离计算和生产资源,并在极致成本控制下最大化并发和可扩展性。完整的自定义设计可以满足任意自有服务构建的集成需要。
【Spark Summit East 2017】使用Spark进行时间序列分析
本讲义出自Simon Ouellette在Spark Summit East 2017上的演讲,主要介绍了在Spark上与时间序列数据进行交互的Scala / Java / Python库——spark-timeseries,演讲中分享了spark-timeseries的总体设计,目前实现的功能,并将提供一些用法示例。
EMR Spark Relational Cache的执行计划重写
作者:王道远,花名健身, 阿里巴巴计算平台EMR技术专家。 背景 EMR Spark提供的Relational Cache功能,可以通过对数据模型进行预计算和高效地存储,加速Spark SQL,为客户实现利用Spark SQL对海量数据进行即时查询的目的。
数据处理平台架构中的SMACK组合:Spark、Mesos、Akka、Cassandra以及Kafka
在今天的文章中,我们将着重探讨如何利用SMACK(即Spark、Mesos、Akka、Cassandra以及Kafka)堆栈构建可扩展数据处理平台。虽然这套堆栈仅由数个简单部分组成,但其能够实现大量不同系统设计。除了纯粹的批量或者流处理机制之外,我们亦可借此实现复杂的Lambda以及Kappa架构。
Python数据预处理:使用Dask和Numba并行化加速
本文是针对Python设计一种并行处理数据的解决方案——使用Dask和Numba并行化加速运算速度。案例对比分析了几种不同方法的运算速度,非常直观,可供参考。
免费试用