《Kafka Stream》调研:一种轻量级流计算模式
流计算,已经有Storm、Spark,Samza,包括最近新起的Flink,Kafka为什么再自己做一套流计算呢?Kafka Stream 与这些框架比有什么优势?Samza、Consumer Group已经包装了Kafka轻量级的消费功能,难道不够吗?
花了一些时间阅读[docs](http
结构化大数据分析平台设计
前言
任何线上系统都离不开数据,有些数据是业务系统自身需要的,例如系统的账号,密码,页面展示的内容等。有些数据是业务系统或者用户实时产生的,例如业务系统的日志,用户浏览访问的记录,系统的购买订单,支付信息,会员的个人资料等。
表格存储Tablestore权威指南(持续更新)
表格存储本着提升用户体验的思路,打造《表格存储Tablestore权威指南》。为用户提供可借鉴的开发指导、经典案例。经典案例按照场景应用类型划分,目前提供五类场景:元数据、消息数据、轨迹溯源、科学大数据以及物联网;每个类型下都会提供多种经典场景。
Spark调优经验总结
### 概述
----------
本文以Spark实践经验和Spark原理为依据,总结了Spark性能调优的一些方法。这些总结基于Spark-1.0.0版本。对于最近推出的Spark-1.1.0版本,本文介绍了几个版本增强。
----------
### Spark性能调优
----------
#### Executor和分区
----------
Executor是一个独
Hive架构优点及使用场景
先阅读初识hive
Hive在大数据生态环境中的位置
Hive架构图
client 三种访问方式
1、CLI(hive shell)、command line interface(命令行接口)
2、JDBC/ODBC(ja.