DistilQwen2.5-R1发布:知识蒸馏助推小模型深度思考
DistilQwen2.5-R1通过知识蒸馏技术,将大规模深度推理模型的知识迁移到小模型中,显著提升了小模型的推理能力。实验结果表明,DistilQwen2.5-R1在数学、代码和科学问题等多个基准测试中表现优异,尤其在7B参数量级上超越了其他开源蒸馏模型。
本文将深入阐述 DistilQwen2.5-R1 的蒸馏算法、性能评估,并且提供在阿里云人工智能平台 PAI 上的使用指南及相关下载教程。
【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B
PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。
现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。
如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
阿里云人工智能平台 PAI 推出 PAI-Judge 裁判员大模型,为用户构建符合应用场景的多维度、细粒度的评测体系,支持单模型评测和双模型竞技两种模式,允许用户自定义参数,实现准确、灵活、高效的模型自动化评测,为模型迭代优化提供数据支撑。
相比通用大模型尤其在回答确定性/数学类问题、角色扮演、创意文体写作、翻译等场景下,PAI-Judge 系列模型表现优异,可以直接用于大模型的评估与质检。
强化学习:蒙特卡罗求解最优状态价值函数——手把手教你入门强化学习(五)
本文介绍了强化学习中的蒙特卡罗算法,包括其基本概念、两种估值方法(首次访问蒙特卡罗与每次访问蒙特卡罗)及增量平均优化方式。蒙特卡罗法是一种基于完整回合采样的无模型学习方法,通过统计经验回报的平均值估计状态或动作价值函数。文章详细讲解了算法流程,并指出其初期方差较大、估值不稳定等缺点。最后对比动态规划,说明了蒙特卡罗法在强化学习中的应用价值。适合初学者理解蒙特卡罗算法的核心思想与实现步骤。