《揭秘Mojo:如何用Python语法外壳包裹C级速度内核》
Python虽是AI开发首选语言,但在大规模计算和AI芯片优化中存在效率短板。C语言虽高效但开发复杂度高。Mojo作为Python超集,兼容其语法并引入C级执行速度,通过编译优化、内存管理改进及硬件抽象层支持,大幅提升AI芯片性能。在神经网络训练与实时推理场景中,Mojo显著缩短时间、降低延迟,为AI开发者提供强大工具,展现广阔前景。
NPU适配推荐系统GR模型流程
本示例将开源Generative Recommendations模型迁移至NPU训练,并通过HSTU融合算子优化性能。基于Atlas 800T A2平台,使用PyTorch 2.1.0、Python 3.11.0等环境。文档涵盖容器启动、依赖安装、算子适配、源码修改、数据预处理及配置文件设置等内容。性能测试显示,使用HSTU融合算子可显著降低端到端耗时(如ml_1m数据集单step从346ms降至47.6ms)。
昇腾910-PyTorch 实现 Vggnet图像分类
本实验基于昇腾平台,使用PyTorch实现Vggnet模型对CIFAR10数据集进行图像分类。内容涵盖Vggnet模型创新点(小卷积核堆叠、深层网络结构)、网络架构剖析及代码实战分析。通过定义`blockVGG`函数构建卷积块,实现VGG11网络,并结合数据预处理、训练与测试模块完成分类任务。实验展示了深度学习中增加网络深度对性能提升的重要性。
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本实验基于PyTorch Geometric,在昇腾平台上实现GraphSAGE图神经网络,使用CiteSeer数据集进行分类训练。内容涵盖GraphSAGE的创新点、算法原理、网络架构及实战分析。GraphSAGE通过采样和聚合节点邻居特征,支持归纳式学习,适用于未见节点的表征生成。实验包括模型搭建、训练与验证,并在NPU上运行,最终测试准确率达0.665。
基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
本文详细讲解了如何在昇腾平台上使用PyTorch训练推荐系统中的经典模型DIN(Deep Interest Network)。主要内容包括:DIN网络的创新点与架构剖析、Activation Unit和Attention模块的实现、Amazon-book数据集的介绍与预处理、模型训练过程定义及性能评估。通过实战演示,利用Amazon-book数据集训练DIN模型,最终评估其点击率预测性能。文中还提供了代码示例,帮助读者更好地理解每个步骤的实现细节。
基于Pytorch Gemotric在昇腾上实现GAT图神经网络
本实验基于昇腾平台,使用PyTorch实现图神经网络GAT(Graph Attention Networks)在Pubmed数据集上的分类任务。内容涵盖GAT网络的创新点分析、图注意力机制原理、多头注意力机制详解以及模型代码实战。实验通过两层GAT网络对Pubmed数据集进行训练,验证模型性能,并展示NPU上的内存使用情况。最终,模型在测试集上达到约36.60%的准确率。
基于Pytorch 在昇腾上实现GCN图神经网络
本文详细讲解了如何在昇腾平台上使用PyTorch实现图神经网络(GCN)对Cora数据集进行分类训练。内容涵盖GCN背景、模型特点、网络架构剖析及实战分析。GCN通过聚合邻居节点信息实现“卷积”操作,适用于非欧氏结构数据。文章以两层GCN模型为例,结合Cora数据集(2708篇科学出版物,1433个特征,7种类别),展示了从数据加载到模型训练的完整流程。实验在NPU上运行,设置200个epoch,最终测试准确率达0.8040,内存占用约167M。
智创 AI 新视界 -- 提升 AI 推理速度的高级方法(16 - 2)
本文深度聚焦提升 AI 推理速度,全面阐述模型压缩(低秩分解、参数量化)、硬件加速(GPU、TPU)及推理算法优化(剪枝感知推理、动态批处理)。结合图像识别等多领域案例与丰富代码示例,以生动形象且专业严谨的方式,为 AI 从业者提供极具价值的技术指南,助力突破 AI 推理速度瓶颈,实现系统性能跃升。
飞桨x昇腾生态适配方案:14_loop算子缺失(上):ONNX模型拆分
本文针对NPU不支持LOOP算子的问题,提出一种解决方案:将ONNX模型拆分为含LOOP算子和不含LOOP算子的子图,单独推理LOOP部分。通过构造包含LOOP算子的ONNX模型,将其转换为JSON格式提取子图,并对子图进行修改(如添加输入节点、删除无关节点)。最后,将JSON转回ONNX格式,完成模型切分与优化。此方法适用于关键路径上的LOOP算子,可有效解决离线推理中的兼容性问题。
飞桨x昇腾生态适配方案:07_性能数据分析
本文介绍了性能调优的全流程,包括分析、定位与优化。通过 profiling 工具采集算子级性能数据,定位计算与调度通信瓶颈。针对计算时间过长问题,可通过升级算子或提交工单解决;调度优化则关注重复编译,关闭在线编译或使用 aclnn 算子可提升效率。数据采集使用 paddlepaddle 的 profiler 工具,结合 msprof 解析生成的性能数据,重点分析 op_statistic_*.csv 和 op_summary_*.csv 文件,通过关键字段(如 Ratio、Total Time、Task Duration 和 Task Wait Time)量化性能瓶颈并实施优化策略。