机器学习开发者不可错过的ModelScope开源模型社区

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 对于刚刚接触机器学习的开发者来说,ModelScope开源模型社区是你不容错过的选择!快速入门及环境安装,可以在线体验也可以本地开发。

@[toc]

ModelScope开源模型社区

对于刚刚接触机器学习的开发者来说,ModelScope开源模型社区是你不容错过的选择!
ModelScope开源模型社区
在这里插入图片描述

快速入门及环境安装

在这里你不仅可以在线体验开源模型,下载数据集,还可以根据说明文档配置环境,手把手的教你如何本地开发环境安装。

安装python环境。
支持python3,不支持python2,建议3.7版本及以上。推荐您使用Anaconda进行安装。
安装深度学习框架。
ModelScopeLibrary目前支持Tensorflow,Pytorch两大深度学习框架进行模型训练、推理。您可根据模型所需的框架选择适合的框架进行安装。
安装ModelScope Library。
提供两种安装方式,您可选择适合的方式进行安装。
pip安装。ModelScope提供了根据不同领域的安装包,您可根据对应的模型选择所需的安装包。
使用源码安装。

还有更加详细的安装指南!
在这里插入图片描述

主要有两大功能,模型库和数据集。

模型库

模型分为两类,可在线体验和可训练。
在这里插入图片描述

下载数据集

可以查找你想要的数据集。
例如我要分类豌豆,就要下载一些豌豆图片作为训练集

在这里插入图片描述
这里有数据集的介绍,数据预览和下载数据集文件。

如果有疑问可以到文档中心查找。
在这里插入图片描述

达摩卡通化模型

输入一张人物图像,实现端到端全图卡通化转换,生成二次元虚拟形象,返回卡通化后的结果图像。
类似网上很火的人像动漫

模型介绍

在这里插入图片描述
详细的介绍了该模型的功能以及原理,并且指出使用的方式和范围。
还有模型的训练集,推理过程,数据评估等等。

这里我们体验一下在线!
在这里插入图片描述
速度还是很快的,卡通化的程度也很高!
人像这方面没什么问题,下面我们上传风景照片看一下
在这里插入图片描述
风景照片也是很不错的,所以我觉得不仅仅可以用到人像上面,对于一些风景来说将其卡通化,也别有一种意境!

下载模型文件

在这里插入图片描述

快速入手

在这里插入图片描述

由于配置本地环境有些麻烦,为了更快的体验产品,这里选择了使用ModelScope提供的远程环境,即使用Notebook进行开发,更加方便和快捷。
在这里插入图片描述
选择免费版本即可。

在这里插入图片描述
上传要抠图的图片

在这里插入图片描述
粘贴示例代码

import cv2
from PIL import Image
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

img_cartoon = pipeline(Tasks.image_portrait_stylization, 'damo/cv_unet_person-image-cartoon_compound-models')
result = img_cartoon('/mnt/workspace/image_cartoon.png')
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
im = Image.open('result.png')
im.show()

在这里插入图片描述

运行
在这里插入图片描述
输出并展示卡通化的图片!

达摩人像抠图

人像抠图对输入含有人像的图像进行处理,无需任何额外输入,实现端到端人像抠图,输出四通道人像抠图结果。
在这里插入图片描述

在线抠图

在这里插入图片描述
这个效果惊艳到我了😲,我也学过一点PS但是抠成这样对我是很难的,连头发丝都能抠出来,拯救了不会抠图的我!
在这里插入图片描述

效果非常好呀!

本地抠图

在这里插入图片描述
报错我调试了一会也没成功。

总结:

虽然有的模型有些不足,但总体来说模型的训练度很高,速度也很快,对于机器学习有很大的帮助,可以在上面找一些项目自己动手做做,很轻松就能实现一个项目。由于我比较喜欢计算机视觉方面,所以我介绍几个计算机视觉方面的,这里还有很多模型如果有你喜欢的大家可以去尝试尝试!

计算机视觉

单标签图像分类 通用图像分割 文字检测 人像美肤 风格迁移 图像翻译

自然语言处理

分词 情感分类 句子相似度 关系抽取 零样本分类 翻译

语音

语音识别 语音合成 语音唤醒 音频分类 语音降噪 回声消除
多模态
图像描述 视觉定位 文本生成图片 多模态表征 视觉问答 图文检索

ModelScope开源模型社区

目录
相关文章
|
28天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
84 3
|
1月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
【10月更文挑战第6天】如何使用机器学习模型来自动化评估数据质量?
|
7天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
17 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
25 1
|
1月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
53 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
17天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
54 1
|
19天前
|
自然语言处理 监控 API
"阿里云ModelScope深度测评:从预训练模型到一键部署,揭秘高效模型开发背后的秘密,开发者必备利器!"
【10月更文挑战第23天】阿里云ModelScope是一款便捷的模型开发、训练、部署和应用平台。它提供丰富的预训练模型,涵盖自然语言处理、计算机视觉等领域,支持一键式模型训练和部署,具备模型版本管理和监控功能,显著降低开发门槛,提高模型应用效率。
43 0
|
20天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
26天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
72 2

热门文章

最新文章

相关产品

  • 人工智能平台 PAI