31_NLP数据增强:EDA与NLPAug工具
在自然语言处理(NLP)领域,高质量的标注数据是构建高性能模型的基础。然而,获取大量准确标注的数据往往面临成本高昂、耗时漫长、覆盖度不足等挑战。2025年,随着大模型技术的快速发展,数据质量和多样性对模型性能的影响愈发显著。数据增强作为一种有效扩充训练样本的技术手段,正成为解决数据稀缺问题的关键策略。
《法务RAG开发不踩坑:Kiln+LlamaIndex+Helicone的协同方法指南》
本文记录企业级法务知识库RAG系统的多AI协同开发实战:面对2万份格式混杂、含15%模糊扫描件的法律文档,14天交付需3秒响应精准查询的系统,构建Kiln AI、LlamaIndex、Helicone协同矩阵。Kiln AI完成数据清洗(有效信息密度提至85%)、合成训练样本及模型微调,使专业术语识别准确率达92%;LlamaIndex搭建三层检索架构,融合语义与关键词检索,匹配错误率降至5%,响应时间缩至2.1秒;Helicone优化提示词与推理监控,输出规范率达97%。
你们催更的模型,云栖大会一口气全发了!
通义发布6款全新模型及“通义百聆”语音品牌,覆盖文本、视觉、语音、视频、代码、图像全场景。Qwen系列升级显著提升多模态理解与生成能力,Wan2.5支持音画同步,百聆攻克企业语音落地难题,全面赋能AI应用创新。
面向古籍版面数字化识别应用研究—基于HisDoc-DETR模型深入剖析
针对古籍版面复杂、文字稀疏、数据稀缺等难题,合合信息与华南理工大学联合提出HisDoc-DETR模型。该框架融合Transformer全局建模与CNN局部特征提取优势,创新引入语义关系学习、双流特征融合及GIoU感知预测头三大模块,显著提升古籍逻辑与物理结构的识别精度,在SCUT-CAB数据集上性能超越主流方法,为古籍数字化、知识库构建与文化遗产传播提供强有力的技术支撑。
如何开发车辆管理系统中的加油管理板块(附架构图+流程图+代码参考)
本文针对中小企业在车辆加油管理中常见的单据混乱、油卡管理困难、对账困难等问题,提出了一套完整的系统化解决方案。内容涵盖车辆管理系统(VMS)的核心功能、加油管理模块的设计要点、数据库模型、系统架构、关键业务流程、API设计与实现示例、前端展示参考(React + Antd)、开发技巧与工程化建议等。通过构建加油管理系统,企业可实现燃油费用的透明化、自动化对账、异常检测与数据分析,从而降低运营成本、提升管理效率。适合希望通过技术手段优化车辆管理的企业技术人员与管理者参考。
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。