科学计算

AI做奥赛题能及格吗?OlympicArena:上海交大推出多学科认知推理基准测试框架,挑战AI极限
OlympicArena是由上海交大等机构联合推出的多学科认知推理基准测试框架,包含7大学科11,163道奥林匹克竞赛级题目,通过细粒度评估推动AI向超级智能发展。

Neo-1:全球首个原子级生成式AI模型!这个AI模型把10年药物研发周期压缩到1个月
VantAI推出的Neo-1是全球首个统一分子生成与原子级结构预测的AI模型,采用潜在空间扩散技术,结合大规模训练和定制数据集,显著提升药物研发效率。

Math24o:SuperCLUE开源的高中奥数推理测评基准,85.71分屠榜
Math24o是首个针对高中奥林匹克数学竞赛的中文大模型测评基准,采用2024年预赛真题实现自动化评估,为模型数学推理能力提供客观衡量标准。

BlockDance:扩散模型加速革命!复旦字节联手实现50%无损提速
BlockDance 是复旦大学与字节跳动联合推出的扩散模型加速方法,通过识别重用相邻时间步中的结构相似特征,减少冗余计算,最高可加速50%,同时保持生成质量。

Chitu:清华核弹级开源!推理引擎3倍提速+50%省卡,国产芯片告别英伟达绑架
Chitu(赤兔)是清华大学与清程极智联合开源的高性能大模型推理引擎,支持多硬件适配,显著提升推理效率,适用于金融、医疗、交通等多个领域。

MT-TransformerEngine:国产训练核弹!FP8+算子融合黑科技,Transformer训练速度飙升300%
MT-TransformerEngine 是摩尔线程开源的高效训练与推理优化框架,专为 Transformer 模型设计,通过算子融合、并行加速等技术显著提升训练效率,支持 FP8 混合精度训练,适用于 BERT、GPT 等大型模型。
MT-MegatronLM:国产训练框架逆袭!三合一并行+FP8黑科技,大模型训练效率暴涨200%
MT-MegatronLM 是摩尔线程推出的面向全功能 GPU 的开源混合并行训练框架,支持多种模型架构和高效混合并行训练,显著提升 GPU 集群的算力利用率。

MHA2MLA:0.3%数据微调!复旦团队开源推理加速神器,KV缓存狂降96.87%
MHA2MLA是复旦大学、华东师范大学、上海AI Lab等机构联合推出的数据高效微调方法,通过引入多头潜在注意力机制(MLA),显著优化基于Transformer的LLM推理效率,降低推理成本。
COMET:字节跳动开源MoE训练加速神器,单层1.96倍性能提升,节省百万GPU小时
COMET是字节跳动推出的针对Mixture-of-Experts(MoE)模型的优化系统,通过细粒度的计算-通信重叠技术,显著提升分布式训练效率,支持多种并行策略和大规模集群部署。

DeepSeek开源周第五弹之一!3FS:支撑V3/R1模型数据访问的高性能分布式文件系统
3FS是DeepSeek开源的高性能分布式文件系统,专为AI训练和推理任务设计,提供高达6.6 TiB/s的读取吞吐量,支持强一致性保障和通用文件接口,优化AI工作负载。

DeepSeek开源周第五弹之二!Smallpond:构建于3FS之上的轻量级数据处理框架,高效处理PB级数据
Smallpond 是 DeepSeek 开源的轻量级数据处理框架,基于 DuckDB 和 3FS 构建,支持 PB 级数据处理,提供高性能的数据加载、查询和转换功能,适合大规模数据预处理和实时分析。
DeepSeek开源周第四弹之三!Profiling Data:训练V3/R1时计算与通信重叠策略的性能分析数据
DeepSeek开源的Profiling Data是基于PyTorch Profiler捕获的性能分析数据,帮助开发者优化深度学习模型的训练和推理过程,提升系统整体效率。

DeepSeek开源周第四弹之一!DualPipe:训练V3/R1的双向流水线并行技术,计算与训练完全重叠,训练效率提升200%
DeepSeek 开源的 DualPipe 技术通过双向流水线并行设计,显著提升大规模深度学习模型的训练效率,优化计算与通信重叠,降低内存峰值需求,适用于推理加速、多模态数据处理等场景。

DeepSeek开源周第四弹之二!EPLB:专为V3/R1设计的专家并行负载均衡器,让GPU利用率翻倍!
EPLB 是 DeepSeek 推出的专家并行负载均衡器,通过冗余专家策略和负载均衡算法,优化大规模模型训练中的 GPU 资源利用率和训练效率。

DeepSeek 开源周第三弹!DeepGEMM:FP8矩阵计算神器!JIT编译+Hopper架构优化,MoE性能飙升
DeepGEMM 是 DeepSeek 开源的专为 FP8 矩阵乘法设计的高效库,支持普通和混合专家(MoE)分组的 GEMM 操作,基于即时编译技术,动态优化矩阵运算,显著提升计算性能。
DeepSeek 开源周第二弹!DeepEP:专为 MoE 训练和推理设计的并行通信库
DeepEP 是 DeepSeek 开源的首个专为混合专家模型(MoE)训练和推理设计的通信库,支持高吞吐量、低延迟通信,优化 NVLink 和 RDMA 网络性能。
Evo 2:基因编程AI革命!!DNA版GPT-4问世:100万碱基全解析,自动设计基因编辑器
Evo 2 是一款由 Acr 研究所、英伟达和斯坦福大学联合开发的 DNA 语言模型,可处理长达百万碱基对的序列,支持基因组设计、变异预测及合成生物学研究。

BioEmu:微软黑科技炸场!生成式AI重构蛋白质模拟:千倍效率碾压传统计算,新药研发周期砍半
BioEmu 是微软推出的生成式深度学习系统,可在单个 GPU 上每小时生成数千种蛋白质结构样本,支持模拟动态变化、预测热力学性质,并显著降低计算成本。

ProtGPS:MIT再造生命科学新基建!蛋白质AI一键预测定位+设计新序列,登Nature子刊
ProtGPS 是麻省理工学院和怀特黑德研究所联合开发的蛋白质语言模型,能够预测蛋白质在细胞内的亚细胞定位,并设计具有特定亚细胞定位的新型蛋白质。

Goedel-Prover:专为自动化数学问题的形式证明生成而设计的 LLM,快速解决形式化数学问题
Goedel-Prover 是一款由普林斯顿大学和清华大学等机构联合推出的开源模型,专注于自动化数学问题的形式证明生成。它通过将自然语言数学问题翻译成形式语言(如 Lean 4),显著提升了数学问题的证明效率。
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。

TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
操作系统智能助手OS Copilot新功能测评
本文介绍了操作系统智能助手OS Copilot的新功能测评。作为一名运维工程师,作者分享了安装过程中遇到的小问题及解决方法,并详细描述了使用体验。OS Copilot在回答速度、命令执行和任务处理方面表现一般,但提供了便捷的自动化操作,适合新手学习。作者指出其优点包括深度定制化、简化重复工作和对新手友好;不足之处在于回答不够流畅、汉化程度低且智能化水平有待提高。整体评分6分,未来有提升空间。

MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。

Mathtutor on Groq:AI 数学辅导工具,实时计算并展示解题过程,支持通过语音提出数学问题
Mathtutor on Groq 是一款基于 Groq 架构的 AI 数学辅导工具,支持语音输入数学问题,实时计算并渲染解题过程,适用于代数、微积分等领域的学习和教学辅助。

ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
ASAL 是由 Sakana AI 联合 OpenAI 等机构推出的自动化搜索人工生命系统,基于基础模型实现多种搜索机制,扩展了人工生命研究的边界。

SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。

GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。

Delta-CoMe:清华联合OpenBMB等高校开源的新型增量压缩算法
Delta-CoMe是由清华大学NLP实验室联合OpenBMB开源社区、北京大学和上海财经大学提出的新型增量压缩算法。该算法通过结合低秩分解和低比特量化技术,显著减少了大型语言模型的存储和内存需求,同时保持了模型性能几乎无损。Delta-CoMe特别适用于处理数学、代码和多模态等复杂任务,并在推理速度上有所提升。
测评《告别资源瓶颈,函数计算驱动多媒体文件处理》解决方案
该体验报告指出,引导文档详尽,涵盖初始设置与示例代码,但需增加常见问题解答及更多高级功能实例。提供的代码示例实用但在处理大文件时存在超时和权限问题。性能方面,处理多媒体文件表现出色,系统稳定,成本控制适宜中小企业。函数计算、对象存储与API网关等云产品在实际应用中表现出色,尤其适用于需要弹性处理的企业场景。建议增强常见问题解答部分以提升用户体验。