刚刚参加了一个MCP赛事,奖金还可以,搭友们可以去试试看
社区8月比赛未获奖有点失落,但发现通义灵码×蚂蚁百宝箱MCP赛事正火热进行!参赛即有机会赢取丰厚奖金,激励满满,令人眼前一亮。已跃跃欲试,搭友们快来一起冲榜夺奖吧!https://tianchi.aliyun.com/competition/entrance/532442
MajorRAG 概述(1/3)
一个RAG项目,全文共三个部分:MajorRAG概述、MajorRAG文件内容提取实现分析、MajorRAG聊天问答系统实现分析。 1)第一次做RAG,欢迎带着指导意见评论 2)希望指出不足时可以附带替换方法
MajorRAG聊天问答系统实现分析(3/3)
一个RAG项目,全文共三个部分:MajorRAG概述、MajorRAG文件内容提取实现分析、MajorRAG聊天问答系统实现分析。 1)第一次做RAG,欢迎带着指导意见评论 2)希望指出不足时可以附带替换方法 博客地址:https://zhangcraigxg.github.io
MajorRAG文件内容提取实现分析(2/3)
一个RAG项目,全文共三个部分:MajorRAG概述、MajorRAG文件内容提取实现分析、MajorRAG聊天问答系统实现分析。 1)第一次做RAG,欢迎带着指导意见评论 2)希望指出不足时可以附带替换方法 博客地址:https://zhangcraigxg.github.io
AI Agent Registry and Growth 对比各种AI Agent注册和发布的渠道生态 OpenAI Google Claude 开源工具 agtm等
本文对比了OpenAI、Google、Claude及开源平台如agtm 的AI Agent注册与发布方法,重点介绍AI Agent Registry API、社区和Marketplace三种方式,帮助开发者和产品经理提升智能体的可见性与分发渠道。
仅3B激活参数,更强的多模态理解与推理能力,百度文心 ERNIE-4.5-VL-28B-A3B-Thinking正式开源!
11月11日,百度开源文心ERNIE-4.5-VL-28B-A3B-Thinking多模态模型,仅3B激活参数,性能媲美顶级大模型。具备强大视觉语言理解、跨模态推理与“图像思考”等创新功能,支持工具调用与视频分析,适用于复杂图文任务,全面开放商用。
阶跃星辰发布首个开源 LLM 级音频编辑大模型 Step-Audio-EditX
阶跃星辰发布全球首个开源LLM级音频编辑大模型Step-Audio-EditX,支持零样本TTS、多语言方言及情感、风格、副语言特征精准控制,采用统一LLM框架,实现文本驱动音频创作。
Mcore Bridge:迈向Megatron训练"零门槛"时代
魔搭社区推出Mcore-Bridge与Megatron-SWIFT,显著降低大模型训练门槛。支持safetensors格式、一键启动、无需权重转换,兼容MoE等架构,实现高性能与易用性统一,让Megatron训练开箱即用。
ChatPPT+魔搭社区:MCP 2.0全面升级!
ChatPPT MCP2.0正式发布,联合魔搭ModelScope推出云端智能体服务,支持生成、编辑、演讲、动画等全链路功能,开放Streamable HTTP协议与本地Stdio双模式,已接入20+平台,服务300+开发者。
详细教程 PhpStorm 2025.1 安装+ 激活中文配置,附安装包
PhpStorm 2025.1 全新升级,深度支持 PHP 8.3+/8.4,强化 AI 助手、Xdebug 调试与 .env 嵌套变量,提升全栈开发效率,打造现代化 PHP 开发利器。
蚂蚁百宝箱联手深铁打造全国首个地铁 AI 智能体「深铁宝」:你的全能城市向导来啦~
蚂蚁百宝箱联合深铁集团、深圳通推出全国首个“公共出行+城市服务”AI智能体「深铁宝」,上线于深圳地铁、深圳通及支付宝APP,实现一句话直达、秒级响应的智慧出行体验,涵盖出行规划、乘车码快捷调取、周边生活服务推荐等一站式功能,助力城市交通与服务数字化升级。
如何在Java代码中处理数据库连接异常
在Java中,合理处理数据库连接异常对程序稳定性至关重要。需捕获`ClassNotFoundException`和`SQLException`等具体异常,使用`try-with-resources`自动释放资源,结合日志记录与用户友好提示,并可引入重试机制应对网络波动,提升系统容错能力。
超长序列并行之Ulysses + Ring-Attention技术原理与实现
本文介绍大模型长序列训练中的显存优化技术,重点解析Ulysses与Ring-Attention的融合方案。通过序列并行降低显存占用,结合zigzag切分与padding_free适配,实现高效多模态训练,在3B模型上显存从75GB降至18GB,显著提升长序列训练可行性。
嵌入式开发必备!Keil uVision5 C51 V9.61 安装激活 + 汉化完整教程, 含(Keil MDK 5.39)
Keil C51 V9.61是一款专用于8051系列单片机的集成开发环境,支持主流厂商芯片,集编辑、编译、仿真于一体,基于μVision5平台,操作便捷。提供C编译器、汇编器、调试器等全套工具,适用于嵌入式开发。附带安装与激活教程,可实现汉化界面,提升使用体验。(237字)
Soul App联合西工大和上交大开源语音合成模型SoulX-Podcast,已登顶Hugging Face TTS趋势榜!
Soul AI Lab联合西工大、上交大开源SoulX-Podcast,支持中英粤川等多语种方言及副语言生成,可稳定输出超60分钟自然流畅的多人对话音频,已在Huggingface登顶TTS趋势榜。
Thinking Machines Lab最新研究结果如何复现?On-Policy Distillation让训练成本直降10倍
Thinking Machines Lab提出On-Policy Distillation技术,让小模型高效继承大模型能力。相比传统强化学习,训练成本降低90%,效率提升十倍,支持本地部署、降低成本与延迟。结合vLLM加速与独立DeepSpeed配置,MS-SWIFT框架实现开箱即用的高效蒸馏训练,助力轻量模型具备“会思考、能纠错、可进化”的智能。
UI-Ins:让 GUI 智能体真正“看懂”用户指令的新范式
通义实验室联合人大发布全新GUI Grounding模型UI-Ins,首创“指令即推理”范式,通过多视角动态推理实现SOTA性能,在五大基准全面领先,支持开源复现与应用。
全新框架 Glyph 开源:用视觉理解文本,3–4 倍上下文压缩,近 5 倍推理提速!
清华CoAI与智谱AI提出Glyph新范式,将长文本渲染为图像,通过视觉语言模型实现高效长上下文处理。3-4倍压缩比,性能媲美主流大模型,显存占用降2/3,低成本支持百万token任务,开源可商用。
腾讯混元世界模型1.1开源:支持多视图及视频输入,单卡部署,秒级生成_魔搭ModelScope社区-ModelScope魔搭社区
混元世界模型1.1(WorldMirror)发布,支持多视图、视频输入,单卡秒级生成3D场景。兼容CG管线,开源可部署,实现点云、深度、相机等多任务统一预测,性能领先。
「超级开发个体」在诞生:一份白皮书带你理解AI时代开发者
10月24日程序员节,魔搭社区联合知乎发布《THE NEXT WAVE:AI时代开发者生态白皮书》,揭示AI时代开发者新画像:以“超级个体”为核心,兼具技术与商业闭环能力,工具平权让个人开发者崛起。报告涵盖年龄、学历、组织分布及认知行为特征,展现开发者如何用AI提效、实现从“写代码”到“搭系统”的跃迁。点击下载完整报告。
【AI绘画】你有多久没有打开SD了?
曾几何时,Stable Diffusion的复杂参数令人崩溃,如今即梦、可灵等AI工具已让生成图片变得轻而易举。哩布哩布发布2.0升级公告,看似迈向更易用的未来,却也悄然为那个钻研模型、拼接工作流的“拓荒时代”奏响终章。技术迭代飞快,但那份对创造的热爱与探索精神,永不褪色。
Face-to-Photo 模型开源!联名麦橘MERJIC,遇见另一个你!
魔搭 DiffSynth-Studio 团队携手知名创作者麦橘MERJIC,正式开源全新 AI 图像生成模型——Face-to-Photo!该模型基于 Qwen-Image-Edit,采用 LoRA 的模型结构,专为人脸图像生成而优化,将一张普通的人脸照片转化…
ModelScope魔搭社区发布月报 -- 25年10月
2025年10月,ModelScope密集发布多模态与大模型更新,并上线国际站、科学智能专区及AIGC工具FlowBench,加速开源生态发展。
Spring Boot中Spring Data JPA的常用注解
Spring Data JPA通过注解简化数据库操作,实现实体与表的映射。常用注解包括:`@Entity`、`@Table`定义表结构;`@Id`、`@GeneratedValue`配置主键策略;`@Column`、`@Transient`控制字段映射;`@OneToOne`、`@OneToMany`等处理关联关系;`@Enumerated`、`@NamedQuery`支持枚举与命名查询。合理使用可提升开发效率与代码可维护性。(238字)
用Macbook微调Qwen3!手把手教你用微调给Qwen起一个新名字
本文介绍如何在MacBook上使用苹果MLX框架高效微调Qwen3大模型。借助MLX的高性能计算与统一内存架构,仅需2分钟即可完成训练,内存占用低至2GB,推理速度达400 Token/s,并支持快速部署为本地API服务,展现Mac轻薄本的强大AI生产力潜力。
图像理解与生成统一模型——前沿模型架构理解
前言生成式多模态模型近年来一直是业界的研究热点。视觉语言模型(VLM)一直是多模态文本生成领域的核心路线,能够完成图像理解任务;扩散模型(Diffusion Model)则一直是图像和视频生成领域的核心方法。
Ling-1T,智渊、思简
今天,我们正式发布Ling 2.0系列的第一款 旗舰非思考模型 - 拥有万亿参数的Ling-1T。推理,是智能的核心表达,更是通用智能体的认知基石。因此,我们持续扩展Ling 2.0 系列模型的自然语言推理能力。Ling-1T沿用 Li…
智谱旗舰模型GLM-4.6开源发布,代码能力对齐Claude Sonnet 4
作为GLM系列的最新版本,GLM-4.6是系列最强的代码Coding模型(较GLM-4.5提升27%)
106_模型合并:Task Arithmetic
在大语言模型(LLM)时代,模型合并技术正在成为高效整合不同模型能力的关键方法。随着开源模型的爆发式增长,如何在不进行昂贵的重新训练的情况下,将多个专用模型的知识整合到一个统一模型中,成为了研究和工业界的重要课题。Task Arithmetic作为一种新兴的模型合并方法,通过向量操作实现权重融合,为这一挑战提供了创新解决方案。
142_故障容错:冗余与回滚机制 - 配置多副本的独特健康检查
在大语言模型(LLM)的生产环境部署中,系统的可靠性和稳定性至关重要。随着LLM应用场景的不断扩展,从简单的文本生成到复杂的多模态交互,用户对服务可用性和响应质量的要求也日益提高。据2025年最新的AI服务可用性报告显示,顶级AI服务提供商的SLA(服务级别协议)承诺已达到99.99%,这意味着每年的计划外停机时间不得超过52.56分钟。
119_LLM训练的高效内存管理与优化技术:从ZeRO到Flash Attention
大型语言模型(LLM)的训练面临着前所未有的计算和内存挑战。随着模型规模达到数百亿甚至数千亿参数,高效的内存管理成为训练成功的关键因素之一。2025年,LLM训练的内存优化技术已经取得了显著进展,从ZeRO优化器到Flash Attention等创新技术,为训练超大规模模型提供了可能。
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
109_噪声鲁棒微调:对抗训练
在当今大语言模型(LLM)的广泛应用中,模型的鲁棒性问题日益凸显。对抗性攻击通过在输入中添加微小但精心设计的扰动,能够误导模型产生错误输出,这对依赖LLM的关键系统构成了严重威胁。噪声鲁棒微调作为提升模型抵抗对抗攻击能力的重要技术,正成为大模型安全性研究的核心方向之一。
116_大规模预训练数据管理与质量控制机制
在2025年的大语言模型(LLM)训练领域,数据管理和质量控制已成为决定模型性能上限的关键因素。随着模型规模的不断扩大(从早期的数十亿参数到如今的数千亿参数),对训练数据的数量、多样性和质量要求也呈指数级增长。一个高效的数据管理系统和严格的质量控制机制,不仅能够确保训练过程的稳定性,还能显著提升最终模型的性能和安全性。
138_绿色计算:碳排放优化 - 估算部署的碳足迹与LLM环境友好型部署最佳实践
随着大语言模型(LLM)在各个行业的广泛应用,其计算需求和环境影响正日益受到关注。根据最新研究,训练一个大型LLM模型可能产生数百吨二氧化碳当量的排放,这相当于普通家庭几十年的碳足迹。在全球气候变化和可持续发展的背景下,如何优化LLM部署的碳足迹,实现环境友好型AI应用,已成为行业面临的重要挑战。
139_剪枝优化:稀疏模型压缩 - 分析结构化剪枝的独特速度提升与LLM部署加速实践
随着大语言模型(LLM)规模的不断增长,模型参数量已从最初的数亿扩展到数千亿甚至万亿级别。这种规模的模型在推理过程中面临着巨大的计算和内存挑战,即使在最先进的硬件上也难以高效部署。剪枝优化作为一种有效的模型压缩技术,通过移除冗余或不重要的参数,在保持模型性能的同时显著减少计算资源需求。
113_数据收集:Common Crawl过滤与高质量LLM训练数据构建
在大型语言模型(LLM)的训练过程中,数据质量直接决定了模型的性能上限。即使拥有最先进的模型架构和训练算法,如果没有高质量的训练数据,也难以训练出优秀的语言模型。Common Crawl作为目前互联网上最大的公开网络爬虫数据集之一,为LLM训练提供了宝贵的资源。然而,从原始的Common Crawl数据中提取高质量的训练素材并非易事,需要经过严格的过滤和清洗。本文将全面探讨Common Crawl数据集的特性、过滤策略的设计原则、以及2025年最新的过滤技术,为构建高质量的LLM训练语料提供系统指导。
112_跨模态微调:文本与图像联合优化
跨模态微调是指在预训练的多模态模型(如CLIP)基础上,针对特定任务进行的参数调整过程。与单一模态微调不同,跨模态微调需要同时考虑文本和图像两种模态之间的交互与对齐,这使得整个优化过程更加复杂但也更具潜力。
140_异步推理:队列管理框架 - 使用Celery处理高并发请求的独特设计
在大型语言模型(LLM)部署的实际场景中,推理服务的并发处理能力直接影响用户体验和系统稳定性。随着LLM应用的普及,如何高效处理大量并发请求成为部署优化中的关键挑战。传统的同步请求处理方式在面对突发流量时容易导致系统过载,响应延迟增加,甚至服务崩溃。异步推理通过引入队列管理机制,能够有效缓冲请求峰值,平滑系统负载,提高资源利用率,从而为LLM服务提供更稳定、更高效的并发处理能力。
115_LLM基础模型架构设计:从Transformer到稀疏注意力
大型语言模型(LLM)的架构设计是其性能的核心决定因素。从2017年Transformer架构的提出,到如今的稀疏注意力和混合专家模型,LLM架构经历了快速的演进。本文将全面探讨LLM基础架构的设计原理,深入分析Transformer的核心机制,详细介绍稀疏注意力、MoE等创新架构,并展望未来架构发展方向。通过数学推导和实践案例,为构建高效、强大的LLM提供全面指导。
117_LLM训练的高效分布式策略:从数据并行到ZeRO优化
在2025年,大型语言模型(LLM)的规模已经达到了数千亿甚至数万亿参数,训练这样的庞然大物需要先进的分布式训练技术支持。本文将深入探讨LLM训练中的高效分布式策略,从基础的数据并行到最先进的ZeRO优化技术,为读者提供全面且实用的技术指南。
141_模型更新:在线学习策略 - 焦点在增量微调的独特无中断部署
在大语言模型(LLM)的实际生产环境中,模型更新是维持服务质量和持续改进的关键环节。随着业务需求的演变、数据分布的变化以及模型能力的提升,如何高效、安全地更新已部署的LLM成为技术团队面临的重要挑战。传统的全量模型替换方法往往伴随着服务中断风险、资源消耗大以及可能的性能波动等问题。为此,增量微调技术作为一种轻量级的模型更新策略,正逐渐成为2025年LLM部署领域的主流选择。
114_预训练:Masked LM优化与动态掩码效率深度解析
在大型语言模型(LLM)的预训练阶段,训练目标函数的设计直接影响模型的学习效率和最终性能。Masked Language Modeling(MLM)作为BERT等模型采用的核心预训练任务,通过随机掩盖文本中的部分token并让模型预测这些被掩盖的token,有效地训练了模型的双向表示能力。然而,传统的静态掩码策略存在重复率高、训练效率低等问题。动态掩码技术的引入显著提升了预训练效率和模型性能。本文将全面探讨MLM优化策略,深入推导动态掩码的效率提升原理,并介绍2025年最新的MLM优化技术,为高效预训练LLM提供理论和实践指导。
101_参数高效微调_QLoRA技术深度解析与实践
在大型语言模型(LLM)时代,高效微调成为降低大模型应用门槛的关键技术。随着模型规模的不断扩大,传统的全参数微调方法面临着巨大的计算资源消耗和内存需求挑战。QLoRA(Quantized Low-Rank Adaptation)作为一种创新的参数高效微调技术,以其独特的量化+低秩适应双重策略,成功地在大幅降低资源消耗的同时保持了接近全精度微调的性能。本文将深入剖析QLoRA的技术原理、实现细节、性能特点,并提供丰富的实践案例,帮助读者全面掌握这一2025年仍然广泛应用的高效微调方法。
108_连续微调:链式任务适应
在大模型时代,如何让预训练模型高效地适应多个相关任务,同时保持知识的连贯性和完整性,成为了一个重要的研究方向。连续微调(Continual Fine-tuning)作为一种新兴的微调范式,通过链式任务适应(Sequential Task Adaptation)机制,实现了模型在顺序学习多个任务时的知识保留和迁移。本文将深入探讨连续微调的核心原理、实现方法、关键技术挑战以及2025年的最新研究进展,为读者提供全面的技术指导和实践指南。