快速玩转 Llama2 机器学习 PAI 最佳实践(一)低代码 Lora 微调及部署

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 采用阿里云机器学习平台PAI-快速开始模块针对 Llama-2-7b-chat 进行开发。PAI-快速开始支持基于开源模型的低代码训练、布署和推理全流程,适合想要快速开箱体验预训练模型的开发者。

1.前言

近期,Meta 宣布大语言模型 Llama2 开源,包含7B、13B、70B不同尺寸,分别对应70亿、130亿、700亿参数量,并在每个规格下都有专门适配对话场景的优化模型Llama-2-Chat。Llama2 可免费用于研究场景和商业用途(但月活超过7亿以上的企业需要申请),对企业和开发者来说,提供了大模型研究的最新利器。

目前,Llama-2-Chat在大多数评测指标上超过了其他开源对话模型,并和一些热门闭源模型(ChatGPT、PaLM)相差不大。阿里云机器学习平台PAI第一时间针对 Llama2 系列模型进行适配,推出全量微调、Lora微调、推理服务等场景最佳实践,助力AI开发者快速开箱。以下我们将分别展示具体使用步骤。


2.Llama 2 低代码 Lora 微调及部署

本实践将采用阿里云机器学习平台PAI-快速开始模块针对 Llama-2-7b-chat 进行开发。PAI-快速开始支持基于开源模型的低代码训练、布署和推理全流程,适合想要快速开箱体验预训练模型的开发者。

2.1准备工作

2.1.1进入PAI-快速开始页面

a. 登入PAI控制台

b. 进入PAI工作空间,并在左侧导航栏中找到“快速开始”。

11.png

2.1.2选择Llama2模型

PAI-快速开始包含了不同来源的许多热门开源模型,来支持人工智能的不同领域和任务。在本次实例中,请选择“生成式AI-大语言模型(large-language-model)”,进入模型列表页。

12.png

在模型列表页中您可以看到多个来自不同开源社区的主流模型。在本次展示中,我们将使用llama-2-7b-chat-hf模型(llama-2-7b-hf模型同理)。您也可以自由选择其他适合您当前业务需求的模型。

Tips:

  • 一般来说,参数量越大的模型效果会更好,但相对应的模型运行时产生的费用和微调训练所需要的数据量都会更多。
  • Llama-2-13B和70B的版本,以及其他开源大语言模型也将后续在PAI-快速开始上线,敬请期待。

13.png


3.模型在线推理

快速开始提供的llama-2-7b-chat-hf来源于HuggingFace提供的Llama-2-7b-chat模型,它也是主要基于Transformer架构的大语言模型,使用多种混合的开源数据集进行训练,因此适合用于绝大多数的英文非专业领域场景。我们可以通过PAI快速开始将此模型直接部署到PAI-EAS,创建一个推理服务。


3.1部署模型

通过模型详情页面的的部署入口您可以一键创建一个基于此模型的在线推理服务,所有的参数已经帮您默认配置完毕。当然,您也可以自由选择所使用的计算资源和其他设置,我们即可以将该模型直接部署到PAI-EAS创建推理服务。

请注意,模型需要至少64GiB内存和24GiB及以上的显存,请确保您选择的计算资源满足以上要求,否则部署可能失败。

14.png


通过服务详情页,您可以查看推理服务的部署状态。当服务状态为“运行中”时,表示推理服务已经部署成功。

image.png

Tips:

  • 后续您可以随时在PAI-快速开始中点击“管理任务与部署”按钮来回到当前的推理服务。


3.2调用推理服务

在部署成功之后,您即可通过WebUI的方式来最快速度调试您的服务,发送预测请求。

image.png

image.png

在WebUI中也同时支持了API调用能力,相关文档可以在WebUI页底点击“Use via API”查看。


4.模型微调训练

llama-2-7b-chat-hf模型适用于绝大多数非专业的场景。当您需要应用特定领域的专业知识时,您可以选择使用模型的微调训练来帮助模型在自定义领域的能力。

Tips:

  • 大语言模型也可以在对话过程中直接学习到比较简单的知识,请根据自己的需求选择是否训练。
  • 当前快速开始支持的训练方式基于LoRA。LoRA训练相较于其他训练方式(如SFT等)会显著降低训练成本和时间,但大语言模型的LoRA训练效果可能不稳定。

4.1准备数据

Tips:

  • 为方便您试用体验Llama 2模型,我们在 llama-2-7b-chat-hf的模型卡片中也已经帮您准备了一份默认用于Instruction Tuning的数据集来直接进行微调训练。

模型支持使用OSS上的数据进行训练。训练数据接受Json格式输入,每条数据由问题、答案、id组成,分别用"instruction"、"output"和"id"字段表示,例如:

[
    {
        "instruction": "以下文本是否属于世界主题?为什么美国人很少举行阅兵?",
        "output": "是",
        "id": 0
    },
    {
        "instruction": "以下文本是否属于世界主题?重磅!事业单位车改时间表已出!",
        "output": "不是",
        "id": 1
    }
]

训练数据的具体格式也可以在PAI-快速开始的具体模型介绍页中查阅,关于如何上传数据到OSS,以及查看相应的数据,请参考OSS的帮助文档

为了更好的验证模型训练的效果,除了提供训练数据集之外,也推荐您准备一份验证数据集:它将会用于在训练中评估模型训练的效果,以及训练的参数优化调整。


4.2提交训练作业

在准备好使用的数据集之后,您即可以在快速开始的模型页面配置训练使用的数据集、提交训练作业。我们已经默认配置了优化过的超参数和训练作业使用的计算资源配置,您也可以根据自己的实际业务修改。


通过训练作业详情页,您可以查看训练任务的执行进度、任务日志、以及模型的评估信息。当训练任务的状态为“成功”,训练作业产出的模型会被保存到OSS上(见作业详情页的“模型输出路径”)。

Tips:

  • 使用默认数据集和默认超参数、计算资源训练大概预计的完成时间在1小时30分钟左右。如果使用自定义训练数据和配置项,预计的训练完成时间可能有所差异,但通常应该在数小时后完成。
  • 如果中途关闭了页面,您可以随时在PAI-快速开始中点击“管理任务与部署”按钮来回到当前的训练任务。

17.png


4.3部署微调模型

当微调训练成功之后,用户可以直接在作业详情页将获得的模型部署为推理服务。具体的模型部署和服务调用流程请参照以上的“直接部署模型”的文档。

18.png

5.总结

  • 本文提到的机器学习平台PAI对Llama2 系列模型进行适配,指为支持Llama2系列模型在PAI上的微调和推理,PAI进行了开发环境的适配。
  • 本文主要展示了基于阿里云机器学习平台PAI快速进行Llama2微调及部署工作的实践,主要是面向7B和13B尺寸的。后续,我们将展示如何基于PAI进行70B尺寸的 Llama-2-70B 的微调及部署工作,敬请期待。
  • 上述实验中,【最佳实践三:Llama2 快速部署 WebUI】支持免费试用机型运行,欢迎点击【阅读原文】前往阿里云使用中心领取“PAI-EAS”免费试用后前往PAI控制台体验。


往期内容:

  1. 快速玩转 Llama2!机器学习 PAI 最佳实践(一)—低代码 Lora 微调及部署
  2. 快速玩转 Llama2!机器学习 PAI 最佳实践(二)—全参数微调训练
  3. 快速玩转 Llama2!机器学习 PAI 最佳实践(三)—快速部署WebUI

特别提示您 Llama2 属于国外公司开发的限制性开源模型,请您务必在使用前仔细阅读并遵守 Llama2 的许可协议,尤其是其限制性许可条款(如月活超过7亿以上的企业需申请额外许可)和免责条款等。

此外提醒您务必遵守适用国家的法律法规,若您利用 Llama2 向中国境内公众提供服务,请遵守国家的各项法律法规要求,尤其不得从事或生成危害国家、社会、他人权益等行为和内容。



相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
2月前
|
人工智能 调度 芯片
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
2月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
146 20
|
3月前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
319 22
|
2月前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
7月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与CUDA:加速深度学习模型训练的最佳实践
【8月更文第27天】随着深度学习应用的广泛普及,高效利用GPU硬件成为提升模型训练速度的关键。PyTorch 是一个强大的深度学习框架,它支持动态计算图,易于使用且高度灵活。CUDA (Compute Unified Device Architecture) 则是 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者直接访问 GPU 的并行计算能力。本文将详细介绍如何利用 PyTorch 与 CUDA 的集成来加速深度学习模型的训练过程,并提供具体的代码示例。
606 1
|
7月前
|
机器学习/深度学习 数据采集 缓存
Elasticsearch与机器学习集成的最佳实践
【8月更文第28天】Elasticsearch 提供了强大的搜索和分析能力,而机器学习则能够通过识别模式和预测趋势来增强这些能力。将两者结合可以实现更智能的搜索体验、异常检测等功能。
220 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
基于PAI-QuickStart搭建一站式模型训练服务体验
【8月更文挑战第5天】基于PAI-QuickStart搭建一站式模型训练服务体验
240 0
|
8月前
|
人工智能 自然语言处理 算法

热门文章

最新文章

相关产品

  • 人工智能平台 PAI