PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。

一、DeepSeek-V3、R1 系列模型

DeepSeek-V3 是 DeepSeek 发布的 MoE(Mixture-of-Experts)大语言模型,总参数量为671B,每个 token 激活的参数量为37B。为了实现高效的推理和成本效益的训练,DeepSeek-V3 采用了 MLA(Multi-head Latent Attention)和 DeepSeekMoE 架构。此外,DeepSeek-V3 首次引入了一种无需辅助损失的负载均衡策略,并设定了多 token 预测的训练目标,以提升性能。DeepSeek-V3 在14.8万亿个多样且高质量的 token 上对模型进行了预训练,随后通过监督微调(SFT)和强化学习来充分发挥其潜力。

DeepSeek-R1 是 DeepSeek 发布的高性能 AI 推理模型,在后训练阶段大规模使用强化学习技术,显著提升了模型的推理能力,在数学、代码、自然语言推理等任务上,其性能与 OpenAI 的 o1 正式版相当。

DeepSeek-R1 具有660B的参数量,DeepSeek 开源 660B 模型的同时,通过模型蒸馏,微调了若干参数量较小的开源模型,其中包括:

模型

基础模型

DeepSeek-R1-Distill-Qwen-1.5B

Qwen2.5-Math-1.5B

DeepSeek-R1-Distill-Qwen-7B

Qwen2.5-Math-7B

DeepSeek-R1-Distill-Llama-8B

Llama-3.1-8B

DeepSeek-R1-Distill-Qwen-14B

Qwen2.5-14B

DeepSeek-R1-Distill-Qwen-32B

Qwen2.5-32B

DeepSeek-R1-Distill-Llama-70B

Llama-3.3-70B-Instruct

目前 PAI Model Gallery 已经支持 DeepSeek-V3、DeepSeek-R1 以及所有蒸馏小参数模型(DeepSeek-R1-Distill)的一键部署。


二、PAI Model Gallery 简介

Model Gallery 是阿里云人工智能平台 PAI 的产品组件,它集成了国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,如Qwen,DeepSeek等系列模型。通过 PAI 对这些模型的适配,用户可以零代码实现从训练到部署再到推理的全过程,简化了模型的开发流程,为开发者和企业用户带来了更快、更高效、更便捷的 AI 开发和应用体验。

PAI Model Gallery 访问地址:https://pai.console.aliyun.com/#/quick-start/models

image.png


三、PAI Model Gallery 一键部署 Deep Seek-V3、Deep Seek-R1

1. 进入 Model Gallery 页面

  1. 登录 PAI 控制台。
  2. 在顶部左上角根据实际情况选择地域。
  3. 在左侧导航栏选择工作空间列表,单击指定工作空间名称,进入对应工作空间内。
  4. 在左侧导航栏选择快速开始 > Model Gallery。

image.png


  1. 在 Model Gallery 页面的模型列表中,单击找到并点击需要部署的模型卡片,例如“DeepSeek-R1-Distill-Qwen-7B”模型,进入模型详情页面。

image.png

  1. 单击右上角部署:目前 DeepSeek-R1 支持采用 vLLM 加速部署;DeepSeek-V3 支持 vLLM 加速部署以及 Web 应用部署;DeepSeek-R1 蒸馏小模型支持采用 BladeLLM(阿里云 PAI 自研高性能推理框架)和 vLLM 加速部署。选择部署方式和部署资源后,即可一键部署服务,生成一个 PAI-EAS 服务。

image.png

  1. 使用推理服务。部署成功后,在服务页面可以点击“查看调用信息”获取调用的 Endpoint 和 Token,想了解服务调用方式可以点击预训练模型链接,返回模型介绍页查看调用方式说明。

image.png image.png

欢迎各位开发者持续关注和使用 PAI-Model Gallery,Model Gallery 会不断上线 SOTA 模型。如果您有任何模型需求,欢迎您联系我们。您可通过钉钉扫描下方二维码(或搜索钉钉群号79680024618),加入PAI-Model Gallery用户交流群。

image.png

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
Cosmos on PAI系列一:PAI-Model Gallery云上一键部署NVIDIA Cosmos Reason-1
本篇文章介绍 Cosmos 最新世界基础模型 Cosmos Reason-1 如何在阿里云人工智能平台 PAI 上进行快速部署使用。
|
2月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
185 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
2月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。
|
3月前
|
缓存 人工智能 负载均衡
PAI 重磅发布模型权重服务,大幅降低模型推理冷启动与扩容时长
阿里云人工智能平台PAI 平台推出模型权重服务,通过分布式缓存架构、RDMA高速传输、智能分片等技术,显著提升大语言模型部署效率,解决模型加载耗时过长的业界难题。实测显示,Qwen3-32B冷启动时间从953秒降至82秒(降幅91.4%),扩容时间缩短98.2%。
|
机器学习/深度学习 数据采集 算法
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
本文围绕 Java 大数据机器学习模型在金融衍生品定价中的应用展开,分析定价现状与挑战,阐述技术原理与应用,结合真实案例与代码给出实操方案,助力提升金融衍生品定价的准确性与效率。
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【新模型速递】PAI-Model Gallery云上一键部署MiniMax-M1模型
MiniMax公司6月17日推出4560亿参数大模型M1,采用混合专家架构和闪电注意力机制,支持百万级上下文处理,高效的计算特性使其特别适合需要处理长输入和广泛思考的复杂任务。阿里云PAI-ModelGallery现已接入该模型,提供一键部署、API调用等企业级解决方案,简化AI开发流程。
|
3月前
|
机器学习/深度学习 人工智能 JSON
DistilQwen-ThoughtX 蒸馏模型在 PAI-ModelGallery 的训练、评测、压缩及部署实践
通过 PAI-ModelGallery,可一站式零代码完成 DistilQwen-ThoughtX 系列模型的训练、评测、压缩和部署。

相关产品

  • 人工智能平台 PAI