DL之paddlepaddle:百度深度学习框架paddlepaddle飞桨的简介、安装、使用方法之详细攻略(一)

简介: DL之paddlepaddle:百度深度学习框架paddlepaddle飞桨的简介、安装、使用方法之详细攻略

paddlepaddle百度深度学习框架的简介


image.png


       飞桨 (PaddlePaddle) 以百度多年的深度学习技术研究和业务应用为基础,集深度学习核心框架、基础模型库、端到端开发套件、工具组件和服务平台于一体,2016 年正式开源,是全面开源开放、技术领先、功能完备的产业级深度学习平台。飞桨源于产业实践,始终致力于与产业深入融合。目前飞桨已广泛应用于工业、农业、服务业等,服务 150 多万开发者,与合作伙伴一起帮助越来越多的行业完成 AI 赋能。



1、飞桨全景图与四大领先技术


灵活高效的产业级深度学习框架:飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,符合他们的开发习惯。同时支持声明式和命令式编程,兼具开发的灵活性和高性能。网络结构自动设计,模型效果超越人类专家。

支持超大规模深度学习模型的训练:飞桨突破了超大规模深度学习模型训练技术,实现了世界首个支持千亿特征、万亿参数、数百节点的开源大规模训练平台,攻克了超大规模深度学习模型的在线学习难题,实现了万亿规模参数模型的实时更新。

多端多平台部署的高性能推理引擎:飞桨不仅兼容其他开源框架训练的模型,还可以轻松地部署到不同架构的平台设备上。同时,飞桨的推理速度也是全面领先的。尤其经过了跟华为麒麟 NPU 的软硬一体优化,使得飞桨在 NPU上的推理速度进一步突破。

面向产业应用,开源覆盖多领域工业级模型库:飞桨官方支持 100 多个经过产业实践长期打磨的主流模型,其中包括在国际竞赛中夺得冠军的模型;同时开源开放 200 多个预训练模型,助力快速的产业应用。


2、丰富的工具组件


1.PaddleHub


预训练模型管理和迁移学习组件,10行代码完成迁移学习。提供40+预训练模型,覆盖文本、图像、视频三大领域八类模型;模型即软件,通过Python API或者命令行工具,一行代码完成预训练模型的预测;结合Fine-tune API,10行代码完成迁移学习。


2.PARL


基于飞桨的深度强化学习框架,夺冠NeurIPS 2018。具有高灵活性和可扩展性,支持可定制的并行扩展, 覆盖 DQN、DDPG、PPO、IMPALA 、A2C、GA3C 等主流强化学习算法。通过 8 块 GPU 拉动近 20000 个 CPU节点运算,将近5个小时迭代一轮的PPO算法加速到不到 1 分钟。


3.AutoDL


自动化深度学习,设计的部分网络效果可优于人类专家设计。AutoDL 包含网络结构自动化设计、迁移小数据建模和适配边缘计算三个部分。开源的 AutoDL 自动网络结构设计的图像分类网络在CIFAR10数据集正确率达到98%,效果优于目前已公开的10种人类专家设计的网络,居于业内领先位置。 [11]  (数据来源:内部测试10种网络分别为:vgg_15_BN_64、vgg_16、resnet_32、resnet_56、resnet_110、resnet_v2_bottleneck_164、wide_resnet、densenet_BC_100_12、resnet_29_8x64d、shake_shake_64d_cutout,实际结果可能受测试环境影响而在一定范围内变化,仅供参考)


4.VisualDL


深度学习可视化工具库,完美可视化深度学习过程。帮助开发者方便地观测训练整体趋势、数据样本质量、数据中间结果、参数分布和变化趋势、模型的结构,更便捷地处理深度学习任务。


5.PALM


灵活易用的多任务学习框架,框架中内置了丰富的模型和数据集读取与处理工具。对于典型的任务场景,用户几乎无需书写代码便可完成新任务的添加;对于特殊的任务场景,用户可通过预置接口来完成对新任务的支持。


6.PGL


高效易用的图学习框架,PGL提供一系列的Python接口用于存储/读取/查询图数据结构,并且提供基于游走(Walk Based)以及消息传递(Message Passing)两种计算范式的计算接口。利用这些接口,可以轻松的搭建最前沿的图学习算法。结合飞桨核心框架,就基本能够覆盖大部分的图网络应用,包括图表示学习以及图神经网络。


7. PaddleFL


开源联邦学习框架。研究人员可以很轻松地用PaddleFL复制和比较不同的联邦学习算法,并且提供很多联邦学习策略及其在计算机视觉、自然语言处理、推荐算法等领域的应用。




paddlepaddle百度深度学习框架的安装


1、快速安装


请在下图中选择您偏好的环境配置,以获得正确的安装指令。 请注意:要求您的 Python 2 版本是 2.7.15+、Python 3 版本是 3.5.1+/3.6/3.7, pip/pip3 版本是 9.0.1+,Python 和 pip 均是 64 位版本,操作系统是 64 位操作系统。

GPU 版本的 PaddlePaddle 需要使用 cuDNN 7.3+ 版本;如果需要 GPU 多卡训练,请先安装nccl (Windows暂不支持nccl)。



image.png



相关文章
|
1月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
101 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
20天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
37 7
|
22天前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
72 3
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
159 1
深度学习环境搭建笔记(一):detectron2安装过程
|
3月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
59 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习、深度学习、强化学习和迁移学习简介、相互对比、区别与联系。
机器学习、深度学习、强化学习和迁移学习都是人工智能领域的子领域,它们之间有一定的联系和区别。下面分别对这四个概念进行解析,并给出相互对比、区别与联系以及应用场景案例分析。
98 1
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
【Deepin 20深度探索】一键解锁Linux深度学习潜能:从零开始安装Pytorch,驾驭AI未来从Deepin出发!
【8月更文挑战第2天】随着人工智能的迅猛发展,深度学习框架Pytorch已成为科研与工业界的必备工具。Deepin 20作为优秀的国产Linux发行版,凭借其流畅的用户体验和丰富的软件生态,为深度学习爱好者提供理想开发平台。本文引导您在Deepin 20上安装Pytorch,享受Linux下的深度学习之旅。
88 12
|
3月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
54 0
|
3月前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
66 0
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习框架之争:全面解析TensorFlow与PyTorch在功能、易用性和适用场景上的比较,帮助你选择最适合项目的框架
【8月更文挑战第31天】在深度学习领域,选择合适的框架至关重要。本文通过开发图像识别系统的案例,对比了TensorFlow和PyTorch两大主流框架。TensorFlow由Google开发,功能强大,支持多种设备,适合大型项目和工业部署;PyTorch则由Facebook推出,强调灵活性和速度,尤其适用于研究和快速原型开发。通过具体示例代码展示各自特点,并分析其适用场景,帮助读者根据项目需求和个人偏好做出明智选择。
69 0
下一篇
无影云桌面