提高商店客流量的智能设备选型指南:从客流分析到数字化运营
实体零售面临客流下滑与运营瓶颈,亟需从“坐商”转向“数据驱动+主动引流”。本文系统解析六大类智能设备技术架构,涵盖客流分析、智能引流、智慧收银、导视系统、数据中台与氛围营造,结合不同业态痛点提供选型策略与实施路径,助力门店实现数字化升级与效率跃迁。
用提示工程让大模型自己检查自己:CoVe方法有效减少幻觉
Chain-of-Verification(CoVe)通过“起草-验证-修复”四步流程,让大模型自我纠错幻觉。关键在于隔离验证:隐去初稿,迫使模型独立核查事实,避免自我强化错误。适用于模型应知但易错的场景,与RAG互补。虽增加延迟与成本,却为高可靠性任务提供保障,是迈向“系统2思维”的重要一步。
人类专家:这代码逻辑我看不太懂。AI:没关系,能跑通,而且比你快
英伟达新论文《SATLUTION》震撼AI与编程界:AI自主进化出SAT求解器,竟超越人类冠军。它不靠补全代码,而是通过“规划+编码”双智能体,在严格规则与验证下自我迭代。70轮后,性能反超顶尖人工求解器,成本却不足2万美元。更深远的是,人类角色正从“写代码”转向“定规则、做验证”。这不仅是技术突破,更是对程序员未来的重新定义:我们或将成为AI的教练与考官,而非唯一的手艺人。