【Deepin 20深度探索】一键解锁Linux深度学习潜能:从零开始安装Pytorch,驾驭AI未来从Deepin出发!

简介: 【8月更文挑战第2天】随着人工智能的迅猛发展,深度学习框架Pytorch已成为科研与工业界的必备工具。Deepin 20作为优秀的国产Linux发行版,凭借其流畅的用户体验和丰富的软件生态,为深度学习爱好者提供理想开发平台。本文引导您在Deepin 20上安装Pytorch,享受Linux下的深度学习之旅。

随着人工智能技术的飞速发展,深度学习框架如Pytorch已成为科研与工业界不可或缺的工具。Deepin 20,作为一款国产化的Linux发行版,以其流畅的用户体验和丰富的软件生态,为深度学习爱好者提供了理想的开发平台。本文将引领您踏上在Deepin 20系统上安装Pytorch与Torch(注意:Pytorch已集成Torch,通常我们直接安装Pytorch即可)的旅程,享受在Linux环境下进行深度学习的乐趣。

一、准备阶段
首先,确保您的Deepin 20系统已安装并更新至最新版本。打开终端,输入以下命令进行系统更新:

bash
sudo apt update
sudo apt upgrade
接下来,安装Python和pip(如果尚未安装)。Deepin 20通常已预装Python,但为了确保环境干净,我们可以使用系统的包管理器安装特定版本的Python及其包管理工具pip:

bash
sudo apt install python3 python3-pip
二、安装Pytorch
Pytorch的安装相对简单,官方网站提供了多种安装方式,包括使用pip直接安装。为了匹配大多数用户的需求,我们将使用pip安装适用于CUDA(如果GPU可用)或CPU的Pytorch版本。

首先,访问Pytorch官网,在“Get Started”页面选择“Linux”作为操作系统,并根据您的系统配置(CPU或带CUDA的GPU)选择合适的安装命令。

以安装CPU版本的Pytorch为例,复制官网提供的pip命令,如:

bash
pip3 install torch torchvision torchaudio
在终端中执行上述命令,pip将自动下载并安装Pytorch及其依赖库。

三、验证安装
安装完成后,我们可以通过编写一小段Python脚本来验证Pytorch是否成功安装。打开文本编辑器,创建一个名为test_pytorch.py的文件,并输入以下内容:

python
import torch

创建一个随机张量

x = torch.rand(5, 3)
print(x)

检查CUDA是否可用(如果安装了CUDA版本的Pytorch)

if torch.cuda.is_available():
device = torch.device("cuda")
y = torch.randn(5, 3).to(device)
print(y)
print(y.type())
else:
print("CUDA is not available. Running on CPU.")
保存文件后,在终端中运行该脚本:

bash
python3 test_pytorch.py
如果输出显示了一个随机张量,并且根据您的系统配置可能还包含CUDA张量的信息,那么恭喜您,Pytorch已成功安装!

四、结语
通过上述步骤,我们成功在Deepin 20系统上安装了Pytorch,为后续的深度学习项目奠定了坚实的基础。Deepin 20以其友好的界面和强大的功能,为Linux新手和深度学习爱好者提供了广阔的学习与实践空间。随着对Pytorch的深入探索,您将能够解锁更多深度学习领域的奥秘,开启属于您的AI之旅。

相关文章
|
5月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
289 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
8月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
480 9
|
4月前
|
机器学习/深度学习 自然语言处理 算法
PyTorch PINN实战:用深度学习求解微分方程
物理信息神经网络(PINN)是一种将深度学习与物理定律结合的创新方法,特别适用于微分方程求解。传统神经网络依赖大规模标记数据,而PINN通过将微分方程约束嵌入损失函数,显著提高数据效率。它能在流体动力学、量子力学等领域实现高效建模,弥补了传统数值方法在高维复杂问题上的不足。尽管计算成本较高且对超参数敏感,PINN仍展现出强大的泛化能力和鲁棒性,为科学计算提供了新路径。文章详细介绍了PINN的工作原理、技术优势及局限性,并通过Python代码演示了其在微分方程求解中的应用,验证了其与解析解的高度一致性。
401 5
PyTorch PINN实战:用深度学习求解微分方程
|
8月前
|
人工智能 安全 Linux
云+AI时代下,Alibaba Cloud Linux 进一步演进思考
用好开源、做深开源、自研创新,打造全方位安全可信的服务器操作系统。
|
5月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
8月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
197 7
|
8月前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
346 2
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘深度学习中的自注意力机制及其在现代AI应用中的革新
揭秘深度学习中的自注意力机制及其在现代AI应用中的革新
|
8月前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
473 0
|
8月前
|
机器学习/深度学习 数据采集 人工智能
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第26天】近年来,深度学习技术在医学影像诊断中的应用日益广泛,通过训练大量医学影像数据,实现对疾病的准确诊断。例如,卷积神经网络(CNN)已成功用于识别肺癌、乳腺癌等疾病。深度学习不仅提高了诊断准确性,还缩短了诊断时间,提升了患者体验。然而,数据隐私、数据共享和算法透明性等问题仍需解决。未来,AI将在医学影像诊断中发挥更大作用,成为医生的得力助手。
547 0