【RAG实践】基于LlamaIndex和Qwen1.5搭建基于本地知识库的问答机器人

简介: LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

引言

什么是RAG

LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信

一个典型的RAG的例子:


这里面主要包括包括三个基本步骤:

1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。

2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。

3. 生成 — 以检索到的上下文为条件,生成问题的回答。

通义千问1.5

Qwen1.5版本年前开源了包括0.5B、1.8B、4B、7B、14B和72B在内的六种大小的基础和聊天模型,同时,也开源了量化模型。不仅提供了Int4和Int8的GPTQ模型,还有AWQ模型,以及GGUF量化模型。为了提升开发者体验,Qwen1.5的代码合并到Hugging Face Transformers中,开发者现在可以直接使用transformers>=4.37.0 而无需 trust_remote_code

与之前的版本相比,Qwen1.5显著提升了聊天模型与人类偏好的一致性,并且改善了它们的多语言能力。所有模型提供了统一的上下文长度支持,支持32K上下文。还有,基础语言模型的质量也有所小幅改进。

Qwen1.5全系列统一具备强大的链接外部系统能力(agent/RAG/Tool-use/Code-interpreter)。

正因为Qwen1.5作为中文LLM率先合入了Transformers,我们也可以使用LLaMaIndex的原生HuggingFaceLLM来加载模型。

LLaMaIndex

LlamaIndex 是一个基于 LLM 的应用程序的数据框架,受益于上下文增强。 这种LLM系统被称为RAG系统,代表“检索增强生成”。LlamaIndex 提供了必要的抽象,可以更轻松地摄取、构建和访问私有或特定领域的数据,以便将这些数据安全可靠地注入 LLM 中,以实现更准确的文本生成。

GTE文本向量

文本表示是自然语言处理(NLP)领域的核心问题, 其在很多NLP、信息检索的下游任务中发挥着非常重要的作用。近几年, 随着深度学习的发展,尤其是预训练语言模型的出现极大的推动了文本表示技术的效果, 基于预训练语言模型的文本表示模型在学术研究数据、工业实际应用中都明显优于传统的基于统计模型或者浅层神经网络的文本表示模型。这里, 我们主要关注基于预训练语言模型的文本表示。


GTE-zh模型使用retromae初始化训练模型,之后利用两阶段训练方法训练模型:第一阶段利用大规模弱弱监督文本对数据训练模型,第二阶段利用高质量精标文本对数据以及挖掘的难负样本数据训练模型。

魔搭社区最佳实践

环境配置与安装

  1. python 3.10及以上版本
  2. pytorch 1.12及以上版本,推荐2.0及以上版本
  3. 建议使用CUDA 11.4及以上

本文主要演示的模型推理代码可在魔搭社区免费实例PAI-DSW的配置下运行(显存24G) :

第一步:点击模型右侧Notebook快速开发按钮,选择GPU环境


第二步:新建Notebook


安装依赖库

!pip install llama-index llama-index-llms-huggingface ipywidgets
!pip install transformers -U
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from IPython.display import Markdown, display
import torch
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.prompts import PromptTemplate
from modelscope import snapshot_download
from llama_index.core.base.embeddings.base import BaseEmbedding, Embedding
from abc import ABC
from typing import Any, List, Optional, Dict, cast
from llama_index.core import (
    VectorStoreIndex,
    ServiceContext,
    set_global_service_context,
    SimpleDirectoryReader,
)

加载大语言模型

因为Qwen本次支持了Transformers,使用HuggingFaceLLM加载模型,模型为(Qwen1.5-4B-Chat)

# Model names 
qwen2_4B_CHAT = "qwen/Qwen1.5-4B-Chat"
selected_model = snapshot_download(qwen2_4B_CHAT)
SYSTEM_PROMPT = """You are a helpful AI assistant.
"""
query_wrapper_prompt = PromptTemplate(
    "[INST]<<SYS>>\n" + SYSTEM_PROMPT + "<</SYS>>\n\n{query_str}[/INST] "
)
llm = HuggingFaceLLM(
    context_window=4096,
    max_new_tokens=2048,
    generate_kwargs={"temperature": 0.0, "do_sample": False},
    query_wrapper_prompt=query_wrapper_prompt,
    tokenizer_name=selected_model,
    model_name=selected_model,
    device_map="auto",
    # change these settings below depending on your GPU
    model_kwargs={"torch_dtype": torch.float16},
)

加载数据:导入测试数据

!mkdir -p 'data/xianjiaoda/'
!wget 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/rag/xianjiaoda.md' -O 'data/xianjiaoda/xianjiaoda.md'
documents = SimpleDirectoryReader("/mnt/workspace/data/xianjiaoda/").load_data()
documents

构建Embedding

加载GTE模型,使用GTE模型构造Embedding类

embedding_model = "iic/nlp_gte_sentence-embedding_chinese-base"
class ModelScopeEmbeddings4LlamaIndex(BaseEmbedding, ABC):
    embed: Any = None
    model_id: str = "iic/nlp_gte_sentence-embedding_chinese-base"
    def __init__(
            self,
            model_id: str,
            **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        try:
            from modelscope.models import Model
            from modelscope.pipelines import pipeline
            from modelscope.utils.constant import Tasks
            # 使用modelscope的embedding模型(包含下载)
            self.embed = pipeline(Tasks.sentence_embedding, model=self.model_id)
        except ImportError as e:
            raise ValueError(
                "Could not import some python packages." "Please install it with `pip install modelscope`."
            ) from e
    def _get_query_embedding(self, query: str) -> List[float]:
        text = query.replace("\n", " ")
        inputs = {"source_sentence": [text]}
        return self.embed(input=inputs)['text_embedding'][0].tolist()
    def _get_text_embedding(self, text: str) -> List[float]:
        text = text.replace("\n", " ")
        inputs = {"source_sentence": [text]}
        return self.embed(input=inputs)['text_embedding'][0].tolist()
    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        texts = list(map(lambda x: x.replace("\n", " "), texts))
        inputs = {"source_sentence": texts}
        return self.embed(input=inputs)['text_embedding'].tolist()
    async def _aget_query_embedding(self, query: str) -> List[float]:
        return self._get_query_embedding(query)

建设索引

加载数据后,基于文档对象列表(或节点列表),建设他们的index,就可以方便的检索他们。

embeddings = ModelScopeEmbeddings4LlamaIndex(model_id=embedding_model)
service_context = ServiceContext.from_defaults(embed_model=embeddings, llm=llm)
set_global_service_context(service_context)
index = VectorStoreIndex.from_documents(documents)

查询和问答

搭建基于本地知识库的问答引擎

query_engine = index.as_query_engine()
response = query_engine.query("西安交大是由哪几个学校合并的?")
print(response)

参考开源链接https://github.com/modelscope/modelscope/tree/master/examples/pytorch/application

相关文章
|
5月前
|
存储 人工智能 自然语言处理
RAG:增强大模型知识库的新范式
RAG:增强大模型知识库的新范式
630 99
|
5月前
|
存储 人工智能 运维
AI 网关代理 RAG 检索:Dify 轻松对接外部知识库的新实践
Higress AI 网关通过提供关键桥梁作用,支持 Dify 应用便捷对接业界成熟的 RAG 引擎。通过 AI 网关将 Dify 的高效编排能力与专业 RAG 引擎的检索效能结合,企业可在保留现有 Dify 应用资产的同时,有效规避其内置 RAG 的局限,显著提升知识驱动型 AI 应用的生产环境表现。
2811 116
|
4月前
|
缓存 边缘计算 运维
基于 Cloudflare Workers 构建高性能知识库镜像服务:反向代理与 HTML 动态重写实践
基于Cloudflare Workers构建的边缘计算镜像服务,通过反向代理、HTML动态重写与智能缓存,优化维基百科等知识平台的访问性能。支持路径映射、安全头清理与容错回退,实现免运维、低延迟、高可用的Web加速方案,适用于教育、科研等合规场景。
976 8
|
5月前
|
存储 数据采集 人工智能
切块、清洗、烹饪:RAG知识库构建的三步曲
大语言模型明明已经喂了大量文档,为什么还是答非所问?就像米其林厨师需要精心处理食材,RAG系统也需要巧妙处理文档。从文本分块、清洗到结构化索引,这些不起眼的处理步骤决定了AI回答质量的上限。掌握这些技巧,让你的RAG系统从「路边摊」蜕变为「米其林餐厅」。
1344 3
|
6月前
|
人工智能 自然语言处理 Java
从青铜到王者,DeepSeek+Spring AI 搭建 RAG 知识库
本文介绍了基于RAG(检索增强生成)技术构建知识库的原理与实现方法。RAG通过结合检索与生成模型,提升大语言模型在问答任务中的准确性与相关性,有效缓解“幻觉”问题。文章还详细讲解了如何利用DeepSeek与SpringAI搭建高效RAG系统,并提供了完整的Java代码示例,帮助开发者快速实现文档处理、向量存储与智能问答功能。适用于智能客服、内容生成、辅助决策等多个场景。
1647 2
|
6月前
|
存储 自然语言处理 前端开发
百亿级知识库解决方案:从零带你构建高并发RAG架构(附实践代码)
本文详解构建高效RAG系统的关键技术,涵盖基础架构、高级查询转换、智能路由、索引优化、噪声控制与端到端评估,助你打造稳定、精准的检索增强生成系统。
1413 2
|
6月前
|
人工智能 监控 算法
构建时序感知的智能RAG系统:让AI自动处理动态数据并实时更新知识库
本文系统构建了一个基于时序管理的智能体架构,旨在应对动态知识库(如财务报告、技术文档)在问答任务中的演进与不确定性。通过六层设计(语义分块、原子事实提取、实体解析、时序失效处理、知识图构建、优化知识库),实现了从原始文档到结构化、时间感知知识库的转化。该架构支持RAG和多智能体系统,提升了推理逻辑性与准确性,并通过LangGraph实现自动化工作流,强化了对持续更新信息的处理能力。
929 5
|
8月前
|
存储 缓存 API
从零构建企业知识库问答系统(基于通义灵码+RAG+阿里云OSS的落地实践)
本系统基于RAG技术,结合语义检索与大语言模型,解决企业知识管理中的信息孤岛、检索低效和知识流失问题。采用通义灵码、Milvus与阿里云OSS,实现知识查询效率提升、新员工培训周期缩短及专家咨询减少。支持多模态文档处理,具备高可用架构与成本优化方案,助力企业智能化升级。
1037 3

热门文章

最新文章