大模型体验报告:阿里云文档智能 & RAG结合构建LLM知识库

简介: 大模型体验报告:阿里云文档智能 & RAG结合构建LLM知识库

一、体验概述

本次体验(文档智能 & RAG让AI大模型更懂业务)活动,特别是其在文档智能和检索增强生成(RAG)结合构建的LLM知识库方面的表现。体验过程中,我们重点关注了文档内容清洗、文档内容向量化、问答内容召回以及通过特定Prompt为LLM提供上下文信息的能力,以判断其是否能够满足企业级文档类型知识库的问答处理需求。

二、体验过程

1. 文档内容清洗

  • 体验结果:文档智能功能在内容清洗方面表现出色,能够自动识别并去除文档中的无用信息,如广告、格式标记等,保证了后续处理的数据质量。
  • 优势:自动化处理大幅减少了人工干预,提高了处理效率。

    2. 文档内容向量化

  • 体验结果:文档内容向量化过程顺利,模型能够有效地将文本转换为向量,保留了文档的语义信息。
  • 优势:向量化的处理使得文档内容更加适合机器学习模型的处理,为后续的检索和问答打下了良好的基础。

    3. 问答内容召回

  • 体验结果:问答内容召回环节表现良好,能够根据用户的问题快速定位到相关文档段落。
  • 优势:高效的检索算法确保了问答的准确性和速度,特别是在大量文档的情况下。

    4. 通过特定Prompt提供上下文信息

  • 体验结果:通过特定Prompt为LLM提供上下文信息的过程顺畅,模型能够基于这些信息生成准确的答案。
  • 优势:为LLM提供足够的上下文信息,极大地提高了问答的相关性和准确性。
    {067F6A4E-403E-4D39-8F50-7636ACB8D451}.png

三、优势体验

在部署过程中,我们明显体验到了通过文档智能和检索增强生成结合起来构建的LLM知识库的优势:

  • 自动化处理:整个流程从文档清洗到问答生成,大部分环节实现了自动化,极大地减轻了人工负担。
  • 处理效率:文档处理速度快,问答响应时间短,满足了企业级应用对效率的要求。
  • 准确性:问答内容召回准确,LLM生成的答案相关性高,为企业提供了可靠的知识支持。

    四、改善建议

    尽管体验过程中表现良好,但仍有以下改善空间:

    1. 文档清洗

  • 建议:增强对特定行业术语和专有名词的识别能力,以进一步提高文档清洗的准确性。

    2. 向量化处理

  • 建议:提供更多自定义的向量化选项,允许用户根据特定需求调整向量化参数。

    3. 问答召回

  • 建议:增加对复杂问题和长句子的处理能力,提高召回算法的鲁棒性。

    4. Prompt设计

  • 建议:提供更丰富的Prompt模板,帮助用户更准确地引导LLM生成答案。
    通过这些改善措施,阿里云的LLM知识库将能更好地服务于企业级文档处理需求,提供更加高效、准确的知识服务。

通过文档智能和检索增强生成(RAG)技术的结合,构建了强大的LLM知识库,显著提升了企业级文档类型知识库的问答处理能力。在部署过程中,系统展示了高效准确的文档处理能力和灵活的Prompt设计,极大地提升了企业知识库的利用率。然而,仍有一些改进空间,如优化冷启动问题、增强多语言支持和复杂查询处理能力,以及建立用户反馈机制。通过持续优化和改进,阿里云的LLM知识库有望在未来为企业提供更加优质的服务

相关文章
|
14天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
71 2
|
24天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
54 2
|
15天前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
60 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
9天前
|
数据采集 人工智能 自然语言处理
文档智能与检索增强生成结合的LLM知识库方案测评:优势与改进空间
《文档智能 & RAG让AI大模型更懂业务》解决方案通过结合文档智能和检索增强生成(RAG)技术,构建企业级文档知识库。方案详细介绍了文档清洗、向量化、问答召回等步骤,但在向量化算法选择、多模态支持和用户界面上有待改进。部署过程中遇到一些技术问题,建议优化性能和增加实时处理能力。总体而言,方案在金融、法律、医疗等领域具有广泛应用前景。
34 11
|
7天前
|
自然语言处理 开发者
多模态大模型LLM、MLLM性能评估方法
针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
大模型强崩溃!Meta新作:合成数据有剧毒,1%即成LLM杀手
在人工智能领域,大型语言模型(LLMs)的快速发展令人瞩目,但递归生成数据可能导致“模型崩溃”。Meta的研究揭示,模型在训练过程中会逐渐遗忘低概率事件,导致数据分布偏差。即使少量合成数据(如1%)也会显著影响模型性能,最终导致崩溃。研究强调保留原始数据的重要性,并提出社区合作和技术手段来区分合成数据和真实数据。论文地址:https://www.nature.com/articles/s41586-024-07566-y
23 2
|
11天前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
32 2
|
19天前
|
人工智能 弹性计算 文字识别
基于阿里云文档智能和RAG快速构建企业"第二大脑"
在数字化转型的背景下,企业面临海量文档管理的挑战。传统的文档管理方式效率低下,难以满足业务需求。阿里云推出的文档智能(Document Mind)与检索增强生成(RAG)技术,通过自动化解析和智能检索,极大地提升了文档管理的效率和信息利用的价值。本文介绍了如何利用阿里云的解决方案,快速构建企业专属的“第二大脑”,助力企业在竞争中占据优势。
|
25天前
|
机器学习/深度学习 数据采集 人工智能
文档智能和检索增强生成(RAG)——构建LLM知识库
本次体验活动聚焦于文档智能与检索增强生成(RAG)结合构建的LLM知识库,重点测试了文档内容清洗、向量化、问答召回及Prompt提供上下文信息的能力。结果显示,系统在自动化处理、处理效率和准确性方面表现出色,但在特定行业术语识别、自定义向量化选项、复杂问题处理和Prompt模板丰富度等方面仍有提升空间。
64 0
|
2月前
|
人工智能 JSON 数据格式
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
【9月更文挑战第6天】RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验

热门文章

最新文章