《Apache Flink 案例集(2022版)》——3.机器学习——Bilibili-Flink 在 B 站的多元化探索与实践(3)

简介: 《Apache Flink 案例集(2022版)》——3.机器学习——Bilibili-Flink 在 B 站的多元化探索与实践(3)

《Apache Flink 案例集(2022版)》——3.机器学习——Bilibili-Flink  在 B 站的多元化探索与实践(2) https://developer.aliyun.com/article/1228229



3. AI on Flink

image.png


传统的机器学习链路里数据的传输、特征的计算以及模型的训练,都是离线处理的,存在两个大的问题:第一个是时效性低,模型和特征的更新周期基本是 t+1 天或者 t+1 小时,在追求时效性的场景下体验并不好。第二个是计算训练的效率很低,必须等天或小时的分区数据全部准备好之后才能开始特征计算和训练。全量分区数据导致计算和训练的压力大。


image.png

在实时技术成熟后,大部分模型训练流程都切换到实时架构上,数据传输、特征计算和训练都可以做到几乎实时,从全量变成了短时的小批量增量进行,训练的压力也大大减轻。同时由于实时对离线的兼容性,在很多场景比如特征回补上,也可以尝试使用 Flink 的流批一体进行落地。


image.png


上图是B站典型的机器学习链路图。从图上可以看出,样本数据生产特征的计算、模型的训练和效果的评估都大量实时化,中间也夹杂着少量离线过程,比如一些超长周期的特征计算。  


同时也可以看出,完整的业务的模型训练链路长,需要管理和维护大量的实时任务和离线任务。出现故障的时候,具体问题的定位也异常艰难。如何在整个机器学习的链路中同时管理号这么多实时和离线任务,并且让任务之间的协同和调度有序进行、高效运维,是B站一直在思考的问题。


image.png


因此B站引入了 Flink 生态下的 AIFlow 系统。AIFlow本身的定位就是做机器学习链路的管理,核心的机器计算引擎是 Flink,这和B站的诉求不谋而合。这套系统有三个主要的特性符合B站的业务需求。  


第一,流批的混合调度。在B站实际的业务生产上,一套完整的实时链路都会夹杂着实时和离线两种类型的任务。AIFlow 支持流批的混合调度,支持数据依赖与控制依赖,能够很好地支持B站现有的业务形态,并且未来在 Flink 流批一体方面也会有更多的发挥空间;


第二,元数据的管理,AIFlow 对所有数据和模型都支持版本管理。有了版本管理,各种实验效果和实验参数就都可追溯;


第三,开放的通知机制。整个链路中存在很多的外部系统节点,难以归纳到平台内部,但是通过通知机制,可以打通 AIFlow 内部节点与外部节点的依赖。整套系统的部署分为三部分,notification service、 meta service 以及 scheduler,扩展性也很好,B站在内部化的过程中实现了很多自己的扩展。


image.png

AIFlow 的构建使用 Python 进行描述,运行时会有可视化的节点展示,可以很方便地追踪各个节点的状态,运维也可以做到节点级的管理,不需要做整个链路级别的运维。


未来规划

在平台建设方面,B站希望融合 Yarn session 模式与 application 模式做 session 的复用,解决任务上线的资源申请效率问题。同时希望大 state 任务也能够在 session 的基础上复用本地的 state,启动时无需重新下载 state。  


同时希望能统一目前的 SQL 和 JAR 包两种模式,统一任务构建方式,让用户以更低的成本更多复杂的操作,平台也更方便管理。  


在增量生产方面,B站希望构建一套标准的数据组织布局优化,并且基于历史查询自动对数据做重布局优化,使用Data Skipping等技术实现计算加速。同时希望对批流存储进行融合,并赋能AI数据的标准化。  


在机器学习方面,B站希望整个系统借助Flink的批流一体能力支持实时离线两套运行模式,方便回补历史数据。同时希望可以实现特征多版本管理,并支持Alink原生训练,打通外部训练系统,实现全链路拉起。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
794 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
454 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
5月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1916 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
6月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
701 6
|
6月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
589 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
6月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
798 9
Apache Flink:从实时数据分析到实时AI
|
6月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
714 0
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
899 33
The Past, Present and Future of Apache Flink
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1674 13
Apache Flink 2.0-preview released

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多