I2A、MBMF、MVE、DMVE…你都掌握了吗?一文总结强化学习必备经典模型(二)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: I2A、MBMF、MVE、DMVE…你都掌握了吗?一文总结强化学习必备经典模型(二)

机器之心专栏

本专栏由机器之心SOTA!模型资源站出品,每周日于机器之心公众号持续更新。

 

本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。


本文将分 2 期进行连载,共介绍 13 强化学习任务上曾取得 SOTA 的经典模型。


  • 第 1 期:DQN、DDQN、DDPG、A3C、PPO、HER、DPPO、IQN

  • 第 2 期:I2A、MBMF、MVE、ME-TRPO、DMVE


您正在阅读的是其中的第 1 期。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。

第1期回顾:I2A、MBMF、MVE、DMVE…你都掌握了吗?一文总结强化学习必备经典模型(一)


本期收录模型速览

模型 SOTA!模型资源站收录情况 模型来源论文
I2A https://sota.jiqizhixin.com/project/i2a
收录实现数量:2
支持框架:PyTorch、TensorFlow
Imagination-Augmented Agents for Deep Reinforcement Learning
MBMF https://sota.jiqizhixin.com/project/mbmf
收录实现数量:4
支持框架:PyTorch、TensorFlow
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
MVE https://sota.jiqizhixin.com/project/mve Model-based value estimation for efficient model-free reinforcement learning
ME-TRPO https://sota.jiqizhixin.com/project/me-trpo
收录实现数量:2
支持框架:TensorFlow
Model-ensemble trust-region policy optimization
DMVE https://sota.jiqizhixin.com/project/dmve Dynamic Horizon Value Estimation for Model-based Reinforcement Learning

强化学习(Reinforcement Learning, RL)是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成奖励最大化或实现特定目标的问题。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。“强化学习”学习的是从环境状态到行为的映射,使得智能体选择的行为能够获得环境最大的奖励,使得外部环境对学习系统在某种意义下的评价(或整个系统的运行性能)为最佳。因此,强化学习也被称为是和监督学习、非监督学习并列的第三种机器学习方法。强化学习特别是深度强化学习近年来取得了令人瞩目的成就,除了应用于模拟器和游戏领域,在工业领域也正取得长足的进步。

强化学习有四个基本组件:环境(States)、动作(Actions)、奖励(Rewards)、策略(Policy)。其中,前三项为输入,最后一项为输出。

强化学习一种普遍的分类方式是根据询问环境会否响应agent的行为进行分类,即无模型(model-free)和基于模型(model-based)两类。其中,model-free RL算法通过agent反复测试选择最佳策略,这也是研究比较多的领域,这些算法是agent直接和环境互动获得数据,不需要拟合环境模型,agent对环境的认知只能通过和环境大量的交互来实现。这样做的优点是通过无数次与环境的交互可以保证agent得到最优解。往往在游戏这样的没有采样成本的环境中都可以用model-free;model-based RL算法根据环境的学习模型来选择最佳策略,agent通过与环境进行交互获得数据,根据这些数据对环境进行建模拟合出一个模型,然后agent根据模型来生成样本并利用RL算法优化自身。一旦模型拟合出来,agent就可以根据该模型来生成样本,因此agent和环境直接的交互次数会急剧减少,缺点是拟合的模型往往存在偏差,因此model-based的算法通常不保证能收敛到最优解。但是在现实生活中是需要一定的采样成本的,采样效率至关重要,因此,向model-based方法引入model-free是一个提升采样效率的重要方式。在model-based RL中不仅仅有原来model-free中的结构,还多了一个model,原本在model-free中用来训练值函数和策略函数的经验有了第二个用处,那就是model learning,拟合出一个适当的环境模型。

本文对经典的强化学习模型是分别从model-free和model-based这两个类别进行介绍的。除了经典的强化学习问题外,还有多个不同的强化学习分支方法,包括分层强化学习、多任务强化学习、分布式强化学习、可解释的强化学习、安全强化学习、迁移学习强化学习、元学习强化学习、多智能体强化学习,以及强化学习在特定领域中的应用等等,这些方法均不在本文讨论范围内。我们将在后续其它专题中具体探讨。



相关文章
|
机器学习/深度学习 存储 算法
I2A、MBMF、MVE、DMVE…你都掌握了吗?一文总结强化学习必备经典模型(三)
I2A、MBMF、MVE、DMVE…你都掌握了吗?一文总结强化学习必备经典模型
613 0
|
机器学习/深度学习 编解码 人工智能
RaptorX、AlphaFold、DeepAccNet、ESMFold…你都掌握了吗?一文总结生物制药必备经典模型(2)
RaptorX、AlphaFold、DeepAccNet、ESMFold…你都掌握了吗?一文总结生物制药必备经典模型
468 0
|
7月前
|
机器学习/深度学习 数据采集 分布式计算
【机器学习】XGBoost: 强化学习与梯度提升的杰作
在机器学习的广阔领域中,集成学习方法因其卓越的预测性能和泛化能力而备受瞩目。其中,XGBoost(Extreme Gradient Boosting)作为梯度提升决策树算法的杰出代表,自其诞生以来,便迅速成为数据科学竞赛和工业界应用中的明星算法。本文旨在深入浅出地介绍XGBoost的核心原理、技术优势、实践应用,并探讨其在模型调优与解释性方面的考量,为读者提供一个全面且深入的理解框架。
230 2
|
机器学习/深度学习 算法 自动驾驶
【强化学习】什么是“强化学习”
强化学习是机器学习领域的一种重要方法,主要通过使用环境的反馈信息来指导智能体的行为,并且通过智能体收集的经验数据对自身策略进行优化。在强化学习中,我们通常用“智能体”来表示学习机器或者一个决策实体。这个智能体在某个环境中采取行动,然后收到环境的反馈信号(奖励或者惩罚),从而逐渐学习到一个最优的行动策略。在强化学习中,主要涉及到一些概念,如状态、行动、奖励、策略等等。状态指的是输入进入智能体算法的集合,行动指的是智能体做出的反应,奖励通常是指环境给予智能体的反馈信息,策略指的是智能体在某种状态下选择的行为。
271 0
【强化学习】什么是“强化学习”
|
机器学习/深度学习 决策智能
初探强化学习
初探强化学习
165 0
|
机器学习/深度学习 算法 自动驾驶
强化学习模型
强化学习模型
221 0
|
机器学习/深度学习 人工智能 自然语言处理
【ICLR2020】基于模型的强化学习算法玩Atari【附代码】
【ICLR2020】基于模型的强化学习算法玩Atari【附代码】
215 0
|
编解码 人工智能 搜索推荐
TGANv2、VideoGPT、DVG…你都掌握了吗?一文总结视频生成必备经典模型(四)
TGANv2、VideoGPT、DVG…你都掌握了吗?一文总结视频生成必备经典模型
444 0
|
机器学习/深度学习 存储 算法
DQN、A3C、DDPG、IQN…你都掌握了吗?一文总结强化学习必备经典模型(一)
DQN、A3C、DDPG、IQN…你都掌握了吗?一文总结强化学习必备经典模型
476 0
|
机器学习/深度学习 存储 算法
强化学习之DQN论文介绍
强化学习之DQN论文介绍
237 0

热门文章

最新文章